Screening of Potassium Dissolving JX-10 Bacteria and Research on the Optimization of Potassium-dissolving
-
摘要:
本文从一钾长石矿区土壤中分离、筛选得到了6株高效解钾细菌。其中命名为JX-10的菌株分离于矿区茼蒿根系土壤,经基因测序鉴定为Bacillus sp.,与KT981886菌相似度高到99.72%。同时就培养时间、温度及转速等解钾工艺条件进行了探讨。实验结果表明,JX-10菌株具有分解钾长石矿物的能力。其较佳解钾工艺条件为:培养温度28 ℃、时间10 d,转速160 r/min,培养基pH值为 5.0,钾长石浓度2 g/L,粒度0.03 mm,接种量25%,硫酸铵浓度0.2 g/L。在较佳工艺条件下,溶液中可溶性钾离子含量可达23.32 mg/L,浸出率为8.36%。
Abstract:In this study, six strains with potassium-dissolving ability were screened from the soils collected from a K-feldspar mining area . One of them, which named JX-10 strain was identified as a kind of bacterium, by 16 S rRNA gene sequencing. Simultaneously, the optimization of potassium-dissolving were also discussed. The results show that, the JX-10 strain had an obvious dissolution effect on K-feldspar. The optimum conditions for the JX-10 strain to remove potassium from K-feldspar were as follows: cultured at 28 ℃ for 10 days, pH value of the culture medium of 5.0, 60 mL medium in a 250 mL conical flask, and 160 r/min shaking speed on a rotary shaker. The K-feldspar concentration and granularity, inoculation volume, ammonium sulfate dose were 2 g/L, 0.03 mm, 25%, 0.2 g/L, respectively. Under the above conditions, the highest the potassium content and corrosion efficiency reach to 23.32 mg/L and 8.36%, respectively.
-
Key words:
- Potassium bacteria /
- Screening /
- Identified /
- Process optimization
-
-
[1] 贺令邦, 杨绍祥. 湘西地区钾、镁、钒矿资源特点及开发利用现状[J]. 矿产综合利用, 2021(2):125-131. HE L B, YANG S Y. Characteristics and Status of developing and utilizing potassium, magnesium, and vanadium resources in Western Hu nan[J]. Multipurpose Utilization of Mineral Resources, 2021(2):125-131. doi: 10.3969/j.issn.1000-6532.2021.02.021
[2] Liu Z G, Li Y C, Zhang S A, et al. Characterization of phosphate- solubilizing bacteria isolated from calcareous soils[J]. Applied Soil Ecology. 2015, 96, 217-224.
[3] 李兴平, 刘阳, 胡兆平. 石灰石和钾长石焙烧法制备硅钙钾肥实验研究[J]. 矿产综合利用, 2020(2):82-86. LI X P, LIU Y, HU Z P. Study on preparation of silicon-calcium-potassium fertilizer by calcining limestone and potassium feldspar[J]. Multipurpose Utilization of Mineral Resources, 2020(2):82-86. doi: 10.3969/j.issn.1000-6532.2020.02.014
[4] 张亚丽, 侯翠红, 籍婷婷, 等. 热法制备含磷钾中微量元素肥料的实验研究[J]. 矿产综合利用, 2021(2):185-191. ZHANG Y L, HOU C H, JI T T, et al. Experimental study on thermal process of preparing phosphorus potassium fertilizers containing medium and trace elements[J]. Multipurpose Utilization of Mineral Resources, 2021(2):185-191. doi: 10.3969/j.issn.1000-6532.2021.02.032
[5] 汤鹏, 胡假频, 易浪波, 等. 钾长石矿区土壤解钾菌的分离与多样性[J]. 中国微生态学杂志, 2015, 27(2):125-129. TANG P, HU J P, YI L B, et al. Isolation and phylogenetic analysis of potassium- solubilizing bacteria[J]. Chinese Journal of Microecology, 2015, 27(2):125-129. doi: 10.13381/j.cnki.cjm.201502001
[6] 姜霁航, 彭彩薇, 颜振鑫, 等. 苹果树根系高效解钾菌的筛选及鉴定[J]. 中国农业气象, 2017, 38(11):738-748. JIANG J H, PENG C W, YAN Z X, et al. Screening and identification of efficient potassium-resolving bacteria in apple tree roots[J]. Chinese Agricultural Meteorology, 2017, 38(11):738-748. doi: 10.3969/j.issn.1000-6362.2017.11.006
[7] 李春钢, 钟艳, 李夏夏, 等. 一种新型解钾菌的筛选及鉴定[J]. 贵州大学学报, 2017, 34(4):132-135. LI C G, ZHONG Y, LI X X, et al. Screening and identification of a new type of potassium bacteria[J]. Journal of Guizhou University( Natural Sciences ), 2017, 34(4):132-135.
[8] Bhabatarini Panda, H. Rahman, Jagabandhu Panda. Phosphate solubilizing bacteria from the acidic soils of Eastern Himalayan region and their antagonistic effect on fungal pathogens[J]. Rhizosphere, 2016, 2:62-71. doi: 10.1016/j.rhisph.2016.08.001
[9] 谢庆东, 何琳燕, 王琪, 等. 一株高效溶解钾长石芽孢杆菌的分离鉴定与生物学特性研究[J]. 土壤, 2017, 49(2):302-307. XIE Q D, HE L Y, WANG Q, et al. Isolation and identification of a feldspar-dissolving bacillus strain and its biological characteristics[J]. Siol, 2017, 49(2):302-307. doi: 10.13758/j.cnki.tr.2017.02.014
[10] Xiao C Q, Fang Y J, Chi R A. Phosphate solubilization in vitro by isolated aspergillus niger and aspergillus carbonarius[J]. Res Chem Intermed, 2015, 41:2867-2878. doi: 10.1007/s11164-013-1395-6
[11] Xiao C Q, Xu G, Wang Q, et al. Biosolubilization of low-grade rock phosphate by mixed thermophiliciron-oxidizing bacteria[J]. Adv Oxid Technol, 2017, 20:1-8.
[12] Prajapati K B, Modi H A. Isolation and characterization of potassium solubilizing bacteria from ceramic industry soil[J]. Microbiology Technology, 2012, 1:8-14.
[13] 薛永萍, 肖春桥, 池汝安, 等. 钾长石矿物的微生物法解钾过程[J]. 天津工业大学学报, 2021, 40(3):71-78. XUE Y P, XIAO C Q, CHI R A, et al. The process of potassium feldspar minerals' potassiumremoval by microbial method[J]. Journal of Tianjin Polytechnic University, 2021, 40(3):71-78. doi: 10.3969/j.issn.1671-024x.2021.03.011
[14] Xiao C Q, Wu X Y, Zhu L, et al. Enhanced biosolubilization of mid-lowgrade phosphate rock by formation of microbial consortium biofilm from activated sludge[J]. Physicochem Probl Miner Process, 2019, 55:217-224.
[15] 薛永萍, 肖春桥, 池汝安, 等. 高效分解钾长石细菌的分离筛选、鉴定及工艺优化[J]. 矿冶工程, 2021, 41(2):70-74. XUE Y P, XIAO C Q, CHI R A, et al. Isolation, screening, identification and process optimization of bacteria that efficiently decompose potash feldspar[J]. Mining and Metallurgical Engineering, 2021, 41(2):70-74. doi: 10.3969/j.issn.0253-6099.2021.02.017
[16] Xue Y P , Xiao C Q , Zhang Y T , et al. Screening of high-efficiency potassium-dissolving strains and optimization of the potassium-dissolving process[J]. Physicochemical Problems of Mineral Processing. 2021.57(2): 1-13.
-