高纯磷铁电硅热法制备影响因素实验研究

林保全, 庞建明, 宋耀欣, 李石稳, 岳锦涛. 高纯磷铁电硅热法制备影响因素实验研究[J]. 矿产综合利用, 2023, 44(2): 28-32, 40. doi: 10.3969/j.issn.1000-6532.2023.02.006
引用本文: 林保全, 庞建明, 宋耀欣, 李石稳, 岳锦涛. 高纯磷铁电硅热法制备影响因素实验研究[J]. 矿产综合利用, 2023, 44(2): 28-32, 40. doi: 10.3969/j.issn.1000-6532.2023.02.006
Lin Baoquan, Pang Jianming, Song Yaoxin, Li Shiwen, Yue Jintao. Experimental Research on Influencing Factors of High-purity Ferro-Phosphorus and Silicon Thermal Method[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(2): 28-32, 40. doi: 10.3969/j.issn.1000-6532.2023.02.006
Citation: Lin Baoquan, Pang Jianming, Song Yaoxin, Li Shiwen, Yue Jintao. Experimental Research on Influencing Factors of High-purity Ferro-Phosphorus and Silicon Thermal Method[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(2): 28-32, 40. doi: 10.3969/j.issn.1000-6532.2023.02.006

高纯磷铁电硅热法制备影响因素实验研究

详细信息
    作者简介: 林保全(1997-),男,硕士,研究方向为合金材料制备
    通讯作者: 庞建明(1980-),男,博士,正高级工程师。研究方向为合金材料制备
  • 中图分类号: TD985;TD95

Experimental Research on Influencing Factors of High-purity Ferro-Phosphorus and Silicon Thermal Method

More Information
  • 本研究以磷矿石和铁粉为原料,工业硅为还原剂,通过正交实验研究冶炼温度、保温时间、配硅系数对磷铁合金产品中C含量、Ti含量、P含量以及P组分收得率的影响。结果表明:实验所得磷铁合金中C含量均低于0.043%,Ti含量均低于0.036%。各因素对P含量以及P组分收得率的影响程度大小顺序为:配硅系数>冶炼温度>保温时间。电硅热法制备低C低Ti高纯磷铁合金的较佳工艺条件为冶炼温度1390 ℃,保温时间60 min,配硅系数1.2。此条件下磷铁合金成分为C含量0.010%,Ti含量0.036%,P含量27.78%,P组分收得率为96.49%。

  • 加载中
  • 图 1  反应(1)~(3)的∆Gθ与温度的关系

    Figure 1. 

    图 2  冶炼温度的影响

    Figure 2. 

    图 3  保温时间的影响

    Figure 3. 

    图 4  配硅系数的影响

    Figure 4. 

    图 5  配硅系数的影响

    Figure 5. 

    图 6  磷铁合金XRD

    Figure 6. 

    图 7  较佳工艺条件产物SEM

    Figure 7. 

    表 1  磷矿主要化学成分/%

    Table 1.  Main chemical constituents of phosphate ore

    P2O5MgOFe2O3Al2O3CaOAs*Cr*
    33.611.791.060.6448.1327.742.08
    下载: 导出CSV

    表 2  正交实验因素与水平

    Table 2.  Orthogonal experimental factors and levels

    水平冶炼温度/℃保温时间/min配硅系数
    11360300.7
    21390500.9
    31420601.0
    41450801.2
    下载: 导出CSV

    表 3  实验合金主要化学成分/%

    Table 3.  Mainchemical components of test alloy

    实验序号磷铁合金C、Ti、P含量
    PCTi
    117.380.030<0.01
    221.250.022<0.01
    323.710.017<0.01
    428.080.0140.027
    521.810.010<0.005
    617.950.011<0.005
    727.780.0100.036
    823.560.017<0.01
    923.980.017<0.01
    1027.630.0430.032
    1117.200.017<0.005
    1221.780.023<0.005
    1327.630.0390.033
    1423.440.0099<0.01
    1522.060.016<0.005
    1617.010.017<0.01
    下载: 导出CSV

    表 4  P含量极差分析

    Table 4.  Phosphorus content range analysis

    冶炼温度保温时间配硅系数
    均值122.6122.7017.39
    均值222.7822.5721.73
    均值322.6522.6923.67
    均值422.5422.6127.78
    R0.240.1310.39
    下载: 导出CSV

    表 5  正交实验方案及P组分收得率

    Table 5.  Orthogonal experiment scheme and the recovery rate of phosphorus

    序号冶炼温度/℃保温时间/min配硅系数P收得率/%
    11360300.746.21
    21360500.961.21
    31360601.072.04
    41360801.289.94
    51390300.964.96
    61390500.748.94
    71390601.296.49
    81390801.076.12
    91420301.070.35
    101420501.294.74
    111420600.749.62
    121420800.967.38
    131450301.294.42
    141450501.074.76
    151450600.963.31
    161450800.748.01
    K1269.40275.94192.78
    K2286.51279.65256.86
    K3282.09281.46293.27
    K4280.50281.45375.59
    均值k167.3568.9948.20
    均值k271.6369.9164.22
    均值k370.5270.3773.32
    均值k470.1370.3693.90
    R4.241.4245.74
    下载: 导出CSV
  • [1]

    朱晓辉, 邱臻哲, 白倩, 等. 磷化工副产磷铁的利用研究进展[J]. 无机盐工业, 2015, 47(2):6-8. ZHU X H, QIU Z Z, BAI Q, et al. Research Progress on utilization of phosphorus iron, a by-product of phosphorus chemical industry[J]. Inorganic Chemicals Industry, 2015, 47(2):6-8.

    [2]

    Tanaka I, Yashiki H. Magnetic properties and recrystallization texture of phosphorus-added non-oriented electrical steel sheets[J]. Journal of Magnetism & Magnetic Materials, 2006, 304(2):611-613.

    [3]

    欧阳页先, 张新仁, 谢晓心. 磷对w(Si)0.4%无取向电工钢磁性能的影响[J]. 钢铁研究, 2009, 37(4):52-55. OUYANG Y X, ZHANG X R, XIE X X. Effect of phosphorus on magnetic properties of W (SI) 0.4% non-oriented electrical steel[J]. Research on Iron and Steel, 2009, 37(4):52-55.

    [4]

    向睿. 新型高B_s铁基非晶/纳米晶合金成分设计与性能研究[D]. 北京: 钢铁研究总院, 2015.

    XIANG R. Composition design and properties of a new high B_s Fe based amorphous / nanocrystalline alloy [D]. Beijing: Central Iron & Steel Research Institute, 2015.

    [5]

    刘虹利, 张均, 王永卿, 等. 磷矿固体废弃物资源化利用问题及建议[J]. 矿产综合利用, 2017(1):6-11. LIU H L, ZHANG J, WANG Y Q, et al. Problems and suggestions on resource utilization of phosphate rock solid waste[J]. Multipurpose Utilization of Mineral Resources, 2017(1):6-11. doi: 10.3969/j.issn.1000-6532.2017.01.002

    [6]

    王圳, 张均, 陈芳, 等. 贵州省磷矿固体废弃物治理现状与建议[J]. 矿产综合利用, 2019(1):11-15. WANG Z, ZHANG J, CHEN F, et al. Present situation and suggestions of phosphate rock solid waste treatment in Guizhou Province[J]. Multipurpose Utilization of Mineral Resources, 2019(1):11-15. doi: 10.3969/j.issn.1000-6532.2019.01.003

    [7]

    裴陈新, 裴英豪, 王立涛. 电工钢中钛的行为研究[J]. 安徽冶金, 2016(2):13-15. PEI C X, PEI Y H, WANG L T. Study on behavior of titanium in electrical steel[J]. Anhui Metallurgy, 2016(2):13-15.

    [8]

    李国峰, 韩跃新, 高鹏, 等. 高磷鲕状赤铁矿深度还原过程中磷在金属相富集热力学研究[J]. 矿产综合利用, 2019(2):152-158. LI G F, HAN Y X, GAO P, etal. Thermodynamic study on phosphorus enrichment in metal phase during deep reduction of high phosphorus oolitic hematite[J]. Multipurpose Utilization of Mineral Resources, 2019(2):152-158. doi: 10.3969/j.issn.1000-6532.2019.02.032

    [9]

    白倩. 磷铁真空热分解及磷铁加镍制备金属磷化物[D]. 云南: 云南师范大学, 2016.

    BAI Q. Preparation of metal phosphide by vacuum thermal decomposition of ferrophosphorus and addition of nickel to ferrophosphorus [D]. Yunnan: Yunnan Normal University, 2016.

    [10]

    赵乃成, 张启轩. 铁合金生产实用技术手册[M]. 北京: 冶金工业出版社, 1998.

    ZHAO N C, ZHANG Q X. Practical technical manual for ferroalloy production [M]. Beijing: Metallurgical Industry Press, 1998.

    [11]

    Cahn R W , Haasen P , Kramer E J . Materials science and technology: a comprehensive treatment[M]. VCH, 1996.

  • 加载中

(7)

(5)

计量
  • 文章访问数:  937
  • PDF下载数:  275
  • 施引文献:  0
出版历程
收稿日期:  2021-03-03
刊出日期:  2023-04-25

目录