-
摘要:
针对弓长岭赤铁矿的浮选尾矿进行了磨矿—强磁选—中磁选预选实验,预选获得的磁选粗精矿铁品位为41.71%,产率为33.62%,铁回收率为84.21%;对比了浮选柱及浮选机粗选两种浮选工艺流程对预选粗精矿提质的影响。单因素实验结果表明浮选柱较佳工作参数为给矿压力0.08 MPa、充气量0.05 m3/h。经过浮选柱和两台浮选机组成的一粗一精一扫流程闭路实验,可以获得再选精矿产率为18.89%,品位为65.29%,铁回收率为74.07%的技术指标,相比于单一浮选机工艺的浮选铁品位和回收率,分别提高了0.27个百分点和2.61个百分点。
Abstract:Pre-separation test of grinding-high intensity magnetic separation-medium magnetic separation was carried out on the flotation tailings of Gongchangling hematite. The iron grade of magnetic separation rough concentrate obtained by pre-separation is 41.71%, yield is 33.62% and iron recovery is 84.21%. The effects of two flotation processes, flotation column and flotation machine roughing, on the quality improvement of pre-concentration coarse concentrate were compared. The single factor test results show that the optimal working parameters of flotation column are feeding pressure 0.08 Mpa and aeration 0.05 m3/h. Through the closed-circuit test of one roughing, one cleaning and one scavenging process made of flotation column and two flotation units, the technical indexes of 18.89% concentrate mineral rate, 65.29% grade and 74.07% iron recovery can be obtained, which are 0.27 percentage points and 2.61 percentage points higher than that of single flotation machine process, respectively.
-
Key words:
- Hematite /
- Flotation tailings /
- Flotation column
-
-
表 1 实验矿样的化学多元素分析结果 /%
Table 1. Multi-element analysis result of flotation tailings
Fe SiO2 Al2O3 MgO CaO CuO Mn Ti Cl P S Sr 16.65 65.61 3.04 2.63 1.40 1.09 0.047 0.069 0.018 0.11 0.013 0.003 表 2 浮选尾矿的粒度组成和金属分布分析
Table 2. Size composition and metal distribution of flotation tailing /%
粒级/mm 粒级产率累积产率/% 粒级品位累积品位/% 粒级回收率粒级回收率/% +0.074 25.98 25.98 7.74 7.74 12.07 12.07 -0.074 +0.053 15.67 41.65 10.02 4.83 9.43 21.50 -0.053 +0.045 17.18 58.83 10.83 9.25 11.17 32.68 -0.045 +0.038 7.15 65.98 14.69 9.84 6.31 38.98 -0.038 34.02 100.00 29.87 16.65 61.02 100.00 总计 100.00 16.65 100.00 表 3 磁选实验结果
Table 3. Test results of magnetic separation
产品名称 产率/% 铁品位/% 铁回收率/% 浮选尾矿 100.00 16.65 100.00 磁选粗精矿 33.62 41.71 84.21 磁选尾矿 66.38 3.96 15.79 表 4 闭路实验结果对比
Table 4. Results of closed-circuit flotation of flotation machine and flotation column
浮选工艺 精矿产率/% 精矿品位/% 尾矿品位/% 回收率/% 浮选柱工艺 56.18 65.29 11.48 87.94 单槽浮
选机工艺54.74 65.02 13.52 85.33 -
[1] 蒋京航, 叶国华, 胡艺博, 等. 铁尾矿再选技术现状及研究进展[J]. 矿冶, 2018, 27(1):1-4. JIANG J H, YE G H, HU Y B, et al. The technology status and research progress of iron tailings re-beneficiation[J]. Mining& Metallurgy, 2018, 27(1):1-4. doi: 10.3969/j.issn.1005-7854.2018.01.001
[2] 陈杜娟, 王志丰, 王婷霞. 某尾矿综合回收选矿实验研究[J]. 矿产综合利用, 2021(1):104-108. CHEN D J, WANG Z F, WANG T X. Experimental study on comprehensive recovery and beneficiation of tailings[J]. Multipurpose Utilization of Mineral Resources, 2021(1):104-108.
[3] 陈虎, 沈卫国, 单来, 等. 国内外铁尾矿排放及综合利用状况探讨[J]. 混凝土, 2013(2):88-92. CHEN H, SHEN W G, SHAN L, et al. Situation of discharge and comprehensive utilization of iron tailings domestic abroad[J]. Concrete, 2013(2):88-92.
[4] 王俊理. 我国金属矿山选矿技术进展及发展方向[J]. 科技创新与应用, 2014(12):295. WANG J L. The progress and development direction of mineral processing technology of metal mines in China[J]. Applied Science and Technology, 2014(12):295.
[5] 岳铁兵, 周文雅, 吕良, 等. 鞍本地区选铁尾矿资源现状与利用前景[J]. 矿产保护与利用, 2007(6):52-54. YUE T B, ZHOU W Y, LV L, et al. Resources survey of tailings from iron concentrator in Anshan-Benxi area[J]. Conservation and Utilization of Mineral Resources, 2007(6):52-54. doi: 10.3969/j.issn.1001-0076.2007.06.015
[6] 冉银华, 张志明, 李强. 滇西某尾矿回收硫铁矿物的试验研究[J]. 矿产综合利用, 2019(1):119-123. RAN Y H, ZHANG Z M, LI Q. Experimental study on the recovery of pyrite from tailings in western Yunnan[J]. Multipurpose Utilization of Mineral Resources, 2019(1):119-123. doi: 10.3969/j.issn.1000-6532.2019.01.026
[7] 杨春, 侯英, 盖壮, 等. 弓长岭赤铁矿浮选尾矿再磨再选试验研究[C]. //第二十二届川鲁冀晋琼粤辽七省矿业学术交流会论文集. 2015: 309-316.
YANG C, HOU Y, GAI Z, et al. The experimental study on regrinding and reseparation of Gongchangling Hematite flotation Tailings [C]. //The twenty-second Sichuan, Shandong, Hebei, Shanxi, Qiong, Guangdong and Liao mining academic exchange conference proceedings. 2015: 309-316.
[8] 王伟之, 刘泽伟, 来有邦. 某磁赤混合铁矿的柱式阳离子反浮选试验研究[J]. 矿产综合利用, 2017(6):64-67. WANG W Z, LIU Z W, LAI Y B. Experimental study on cationic reverse flotation by flotation column of a magnetite and hematite mixed iron ore[J]. Multipurpose Utilization of Mineral Resources, 2017(6):64-67. doi: 10.3969/j.issn.1000-6532.2017.06.013
[9] 孙凤杰, 陶秀祥. “旋流”对浮选柱气含率及气泡尺寸的影响[J]. 金属矿山, 2017(12):115-118. SUN F J, TAO X X. Influence of “swirling flow” on gas hold up and bubble size in flotation column[J]. Metal Mine, 2017(12):115-118. doi: 10.3969/j.issn.1001-1250.2017.12.023
[10] 李城, 王伟之, 刘泽伟, 等. 钒钛磁铁矿中钛的柱机联合全浮工艺试验研究[J]. 矿产综合利用, 2019(3):40-43+47. LI C, WANG W Z, LIU Z W, et al. Experimental research on column-cell integration full flotation technology of titanium in vanadium titanium magnetite[J]. Multipurpose Utilization of Mineral Resources, 2019(3):40-43+47. doi: 10.3969/j.issn.1000-6532.2019.03.009
[11] 赵敏捷, 方建军, 李国栋, 等. 旋流-静态微泡浮选柱的应用及研究进展[J]. 矿产综合利用, 2016(4):6-10. ZHAO M J, FANG J J, LI G D, et al. State andapplication of cyclonic static microbubble flotation column[J]. Multipurpose Utilization of Mineral Resources, 2016(4):6-10. doi: 10.3969/j.issn.1000-6532.2016.04.002
-