攀西地区超微细粒级钛铁矿资源选矿工艺研究

严伟平, 李维斯, 杨耀辉, 曾小波, 邓建, 李伦. 攀西地区超微细粒级钛铁矿资源选矿工艺研究[J]. 矿产综合利用, 2023, 44(4): 55-61. doi: 10.3969/j.issn.1000-6532.2023.04.008
引用本文: 严伟平, 李维斯, 杨耀辉, 曾小波, 邓建, 李伦. 攀西地区超微细粒级钛铁矿资源选矿工艺研究[J]. 矿产综合利用, 2023, 44(4): 55-61. doi: 10.3969/j.issn.1000-6532.2023.04.008
Yan Weiping, Li Weisi, Yang Yaohui, Zeng Xiaobo, Deng Jian, Li Lun. Research on Mineral Processing Technology of Ultrafine Ilmenite Resources in Panzhihua-Xichang Area[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(4): 55-61. doi: 10.3969/j.issn.1000-6532.2023.04.008
Citation: Yan Weiping, Li Weisi, Yang Yaohui, Zeng Xiaobo, Deng Jian, Li Lun. Research on Mineral Processing Technology of Ultrafine Ilmenite Resources in Panzhihua-Xichang Area[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(4): 55-61. doi: 10.3969/j.issn.1000-6532.2023.04.008

攀西地区超微细粒级钛铁矿资源选矿工艺研究

  • 基金项目: 国家自然科学基金战略性矿产资源开发利用专项(2021YFC2900800);中国地质调查局地质大调查项目(DD20230039);攀西试验区第五批重大科技攻关项目:“攀西地区钒钛磁铁矿中共伴生资源高效分离技术研究及产业化应用示范”;四川省经信厅揭榜挂帅项目:“攀西地区关键金属元素赋存规律及高效利用技术开发与应用”;攀西地区钒钛磁铁矿中伴生资源的高效分离技术研究及产业化应用示范;钒钛资源综合利用产业技术创新战略联盟协同项目:基于矿物表面组分的选择性溶蚀行为差异强化微细粒钛铁矿浮选效率研究
详细信息
    作者简介: 严伟平(1984-),硕士,副研究员,主要从事战略性矿产资源的高效开发与利用研究
    通讯作者: 杨耀辉(1985-),博士,研究员,主要从事战略资源高效分离技术与产业化示范研究工作
  • 中图分类号: TD952

Research on Mineral Processing Technology of Ultrafine Ilmenite Resources in Panzhihua-Xichang Area

More Information
  • 这是一篇矿物加工工程领域的论文。针对攀西地区某选矿厂的超微细粒级钛铁矿难回收的问题,进行了浮选工艺流程的对比研究。采用直接浮选、脱泥-浮选、 “离心-浮选”、“超导-浮选”、“强磁-浮选”、“悬振-浮选”等选矿工艺流程,试验结果表明:直接浮选和脱泥-浮选工艺无法获得TiO2品位大于46%的钛精矿产品;悬振和强磁选可以获得品位较高的预富集精矿,有利于后续浮选作业,离心和超导可以获得回收率较高的预富集精矿,可保证钛铁矿的有效回收。但考虑到超导预富集工艺工业实施投入大、目前尚无成熟工业案例;而强磁选和悬振预富集工艺易于工业化实施,但悬振选矿机的单机处理能力有限。因此,最终确定最优选矿工艺为“强磁-浮选”,可获得钛精矿品位46.62%,开路浮选作业回收率58.32%,全流程回收率43.78%的指标。

  • 加载中
  • 图 1  样品嵌布特征和连生关系(光学显微镜)

    Figure 1. 

    图 2  样品MLA(扫描电镜)

    Figure 2. 

    图 3  直接浮选实验流程

    Figure 3. 

    图 4  脱泥预处理流程

    Figure 4. 

    图 5  离心预富集实验流程

    Figure 5. 

    图 6  预富集-浮选实验流程

    Figure 6. 

    图 7  超导预富集实验流程

    Figure 7. 

    图 8  强磁预富集实验流程

    Figure 8. 

    图 9  悬振预富集实验流程

    Figure 9. 

    图 10  四种预富集工艺分选指标对比

    Figure 10. 

    图 11  四种预富集+浮选工艺指标对比

    Figure 11. 

    表 1  原矿的多元素化学分析结果/%

    Table 1.  Multi-element chemical analysis results of raw ore

    TFeTiO2SSiO2Al2O3CaOMgOAl2O3Na2O其他
    16.3116.940.3428.945.718.3211.885.710.605.25
    下载: 导出CSV

    表 2  原矿筛分分析结果

    Table 2.  Screening analysis results of raw ore

    粒级/mm产率/%品位/%分布率/%
    TiO2TFeTiO2TFe
    +0.0450.394.2212.110.100.29
    -0.045+0.0286.756.0411.082.414.58
    -0.028+0.01913.6512.3514.319.9511.97
    -0.019+0.01037.1717.2216.3537.7937.25
    -0.01042.0520.0417.8149.7545.91
    原矿100.0016.9416.31100.00100.00
    下载: 导出CSV

    表 3  原矿中主要矿物的含量/%

    Table 3.  Content of main minerals in raw ore

    钛磁铁矿钛铁矿黄铁矿橄榄石辉石绿泥石斜长石其他
    3.732.370.229.8439.655.632.316.28
    下载: 导出CSV

    表 4  主要矿物解离度数据/%

    Table 4.  Dissociation data for major minerals

    矿物解离
    钛铁
    黄铁
    铬尖
    晶石
    赤铁
    磷灰
    一水硬
    铝石
    黄铜
    榍石方解
    钙钛
    石英橄榄
    透辉
    角闪
    黑云
    绿泥
    长石绿帘
    误差
    钛铁矿75.8400.010.060.010.010.030.010.460.020.0200.3215.360.830.451.012.760.032.77
    黄铁矿69.971.380000.120.10.050.30000.5619.650.890.712.012.1502.11
    橄榄石81.511.110.020.010.190000.090.020007.590.830.260.91.090.036.36
    透辉石80.514.870.060.060.060.030.020.020.280.040.020.010.702.160.591.351.530.077.63
    长石63.737.440.060.070.030.040.020.010.30.050.020.020.8613.022.321.161.400.239.24
    下载: 导出CSV

    表 5  直接浮选实验结果

    Table 5.  Test results of traditional flotation

    产品名称产率/%TiO2品位/%TiO2回收率/%
    钛精矿17.7439.9641.74
    中矿42.5025.773.79
    中矿33.5816.133.82
    中矿27.2215.907.61
    中矿19.4116.188.96
    扫选精矿19.6611.4616.74
    尾矿39.907.3817.35
    原矿100.0016.98100.00
    下载: 导出CSV

    表 6  脱泥-浮选实验结果

    Table 6.  Test results of desliming and flotation

    产品名称产率/%TiO2品位/%TiO2回收率/%
    钛精矿17.1242.2442.76
    钛中矿42.1734.184.38
    钛中矿33.2520.773.99
    钛中矿25.5516.645.46
    钛中矿19.4410.826.04
    扫选精矿10.9316.7810.84
    矿泥19.3215.1417.30
    尾 矿32.224.859.24
    给 矿100.0016.92100.00
    下载: 导出CSV

    表 7  离心-浮选实验结果

    Table 7.  Test results of centrifugal-flotation

    产品名称产率/%TiO2品位/%TiO2回收率/%
    离心尾矿22.1010.1813.26
    离心精矿钛精矿77.9017.3518.8945.1786.7446.19
    浮钛中矿42.2214.4535.95
    浮选尾矿18.334.254.59
    原矿100.0016.97100.00
    下载: 导出CSV

    表 8  超导-浮选实验结果

    Table 8.  Test results of superconductivity-flotation

    产品名称产率/%TiO2品位/%TiO2回收率/%
    超导尾矿36.208.1215.41
    超导精矿钛精矿63.8015.9621.9846.0882.6743.36
    浮钛中矿32.9818.2834.47
    浮选尾矿15.865.184.84
    原矿100.0016.96100.00
    下载: 导出CSV

    表 9  强磁-浮选实验结果

    Table 9.  Test results of high intensity magnetic flotation

    产品名称产率/%TiO2品位/%TiO2回收率/%
    强磁尾矿45.329.3224.93
    强磁精矿钛精矿54.6815.9123.2646.6275.0743.78
    浮钛中矿25.4918.6027.99
    浮选尾矿13.284.213.30
    原矿100.0016.94100.00
    下载: 导出CSV

    表 10  悬振+浮选试验结果

    Table 10.  Test results of suspension vibration + flotation

    产品名称产率/%TiO2品位/%TiO2回收率/%
    悬振尾矿51.869.3828.69
    悬振精矿钛精矿48.1435.2714.8525.1232.8446.7871.3168.3240.97
    浮钛中矿20.4222.7127.35
    浮选尾矿12.873.952.99
    原矿100.0016.96100.00
    下载: 导出CSV
  • [1]

    严伟平, 曾小波. 攀西地区钒钛磁铁矿资源开发利用水平评估方法研究[J]. 矿产综合利用, 2020(6):79-83. YAN W P, ZENG X B. Study on the evaluation method of development and utilization level of vanadium-titanium magnetite mine in Panxi district[J]. Multipurpose Utilization of Mineral Resources, 2020(6):79-83. doi: 10.3969/j.issn.1000-6532.2020.06.014

    YAN W P, ZENG X B. Study on the evaluation method of development and utilization level of vanadium-titanium magnetite mine in Panxi district[J]. Multipurpose Utilization of Mineral Resources, 2020(6): 79-83. doi: 10.3969/j.issn.1000-6532.2020.06.014

    [2]

    惠 博, 杨耀辉. 攀西红格矿区橄辉岩型钒钛磁铁矿矿石性质研究及对选矿工艺的影响[J]. 矿产综合利用, 2020(4):126-129. HUI B, YANG Y H. Properties of olive-pyroxene vanadium-titanium magnetite ore in Hongge mining area of Panxi research and influence on mineral processing technology[J]. Multipurpose Utilization of Mineral Resources, 2020(4):126-129. doi: 10.3969/j.issn.1000-6532.2020.04.021

    HUI B, YANG Y H. Properties of olive-pyroxene vanadium-titanium magnetite ore in Hongge mining area of Panxi research and influence on Mineral Processing Technology[J]. Multipurpose Utilization of Mineral Resources, 2020(4): 126-129. doi: 10.3969/j.issn.1000-6532.2020.04.021

    [3]

    叶恩东, 吴轩. 攀西钛精矿主要杂质元素赋存状态研究[J]. 钢铁钒钛, 2017, 38(4):63-68. YE E D, WU X. Research of the occurrence state of the main impurities in Panxi ilmenite[J]. Iron Steel Vanadium Titanium, 2017, 38(4):63-68. doi: 10.7513/j.issn.1004-7638.2017.04.013

    YE E D, WU X. Research of the occurrence state of the main impurities in Panxi ilmenite[J]. Iron Steel Vanadium Titanium, 2017, 38(4): 63-68. doi: 10.7513/j.issn.1004-7638.2017.04.013

    [4]

    吴本羡. 攀西地区钛铁矿的工艺特征[J]. 矿产综合利用, 1987(1):74-79. WU B X. Technological characteristics of ilmenite in Panzhihua-Xichang area[J]. Multipurpose Utilization of Minerals, 1987(1):74-79.

    WU B X. Technological characteristics of ilmenite in Panzhihua-Xichang area[J]. Comprehensive Utilization of Minerals, 1987 (1): 74-79.

    [5]

    曹玉川, 黄光耀, 刘星. -38 μm粒级钛铁矿高效回收试验研究[J]. 矿冶工程, 2012, 32(4):48-50. CAO Y C, HUANG G Y, LIU X. Study on high-efficiency recovery of ultrafine ilmenite( - 38 μm)[J]. Mining and Metallurgical Engineering, 2012, 32(4):48-50. doi: 10.3969/j.issn.0253-6099.2012.04.013

    CAO Y C, HUANG G Y, LIU X. Study on high-efficiency recovery of ultrafine ilmenite( - 38 um)[J]. Mining and Metallurgical Engineering, 2012, 32(4): 48-50. doi: 10.3969/j.issn.0253-6099.2012.04.013

    [6]

    谢泽君. 选钛厂细粒钛铁矿浮选探讨[J]. 攀钢技术, 1998(6):24-28. XIE Z J. Discussion on flotation of fine ilmenite from titanium separation plant[J]. Pangang Technology, 1998(6):24-28.

    XIE Z J. Discussion on flotation of fine ilmenite from titanium separation plant[J]. Pangang Technology, 1998(6): 24-28.

    [7]

    余家华, 刘洪贵. 国内外钛矿和富钛料生产现状及发展趋势[J]. 世界有色金属, 2003(6):4-8. YU J H, LIU H G. Status quo of production of titanium ores and concentrates at home and abroad and trend of development[J]. World Nonferrous Metals, 2003(6):4-8.

    YU J H, LIU H G. Status quo of production of titanium ores and concentrates at home and abroad and trend of development[J]. World Nonferrous Metals, 2003(6): 4-8.

    [8]

    Chen L, Ren N, Xiong D. Experimental studyon performance of continuous centrifugal concentrator in reconcentrating fine hematite[J]. International Journal of Mineral Processing, 2008, 87(1/2):9-16.

    [9]

    Xiong D. Research and commercialization of treatment of fine ilmenite. with Slon magnetic separators[J]. Magnetic and Elictrical Separation, 2000, 4(10):121-127.

    [10]

    张松, 杨波. 悬振锥面选矿机的工业应用现状[J]. 矿产综合利用, 2019(3):22-26. ZHANG S, YANG B. Industrial application status of hang and vibrate of cone concentrator[J]. Multipurpose Utilization of Mineral Resources, 2019(3):22-26. doi: 10.3969/j.issn.1000-6532.2019.03.005

    ZHANG S, YANG B. Industrial application status of hang and vibrate of cone concentrator[J]. Multipurpose Utilization of Mineral Resources, 2019(3): 22-26. doi: 10.3969/j.issn.1000-6532.2019.03.005

    [11]

    闫艳军. 白云鄂博共伴生矿高梯度超导磁选预富集工艺研究[D]. 包头: 内蒙古科技大学, 2019.

    YAN Y J. Study on Preconcentration of Bayan Obo associated ore using high gradient superconducting magnetic separation [D]. Baotou: Inner Mongolia University of Science and Technology, 2019.

  • 加载中

(11)

(10)

计量
  • 文章访问数:  1241
  • PDF下载数:  254
  • 施引文献:  0
出版历程
收稿日期:  2022-11-23
刊出日期:  2023-08-25

目录