A Special Rare-earth Mineral —Eudialyte
-
摘要:
这是一篇地球科学领域的论文,主要阐述了碱性岩中的一种含稀土矿物-异性石的基本特征。异性石是一种常见的岩浆岩副矿物和热液矿物,易受风化和氧化等表生作用影响,能较好记录和保存岩浆和热液活动的原始信息,因而是研究岩浆和/或热液过程的一种常见示踪矿物。通过文章的综述,希望能够为深化异性石矿物学和地球化学研究、加强异性石型稀土矿方面的找矿工作、广泛开展与异性石有关的地质问题探讨等提供较全面的基础性认识。
Abstract:This is an essay in the field of earth science, which mainly reviews the basic characteristics of eudialyte, a rare earth-containing mineral in alkaline rocks. Eudialyte is a common accessory mineral and hydrothermal mineral of magmatic rock, which is vulnerable to weathering and oxidation and other epigenetic effects. It can better record and preserve the original information of magma and hydrothermal activities, so it is a common tracer mineral for studying magma and/or hydrothermal processes. Through the review of the article, we hope to provide a more comprehensive basic understanding for deepening the Mineralogy and geochemical research of Eudialyte, strengthening the prospecting work of Eudialyte REE deposit, and widely carrying out the discussion of geological problems related to Eudialyte.
-
Key words:
- Earth science /
- REE /
- Eudialyte /
- Geochemical /
- Mineralogy
-
-
表 1 与异性石有关的稀土矿吨位及品位(数据来源于[19])
国家 矿床名称 矿石
储量/Mt矿石
品位/%稀土氧
化物储
量/MtHREO/
TREO/%格陵兰 Ilimaussaq Kvanefjeld deposit 619 1.06 6.547 11.8 Sørensen deposit 242 1.1 2.667 11.7 Zone 3 deposit 95.3 1.16 1.106 12.1 加拿大 Thor Lake
(Nechalacho)Basal zone 125.7 1.43 1.799 20.9 Upper zone 177.7 1.32 2.353 10 Kipawa 27.1 0.4 0.107 36.2 Strange Lake Enriched zone 20 1.14 0.288 49.7 Granite zone 472.5 0.87 4.118 36.5 瑞典 Norra Kärr 58.1 0.59 0.343 50.3 美国 Bokan, Alaska 4.9 0.61 0.03 40.1 澳大利亚 Toongi 73.2 0.89 0.651 23.3 Brockman 36.2 0.21 0.076 85.8 -
[1] U. S. Geological Survey[R]. Mineral Commodity Summaries, 2023: 142-143.
[2] Schilling J, Wu F, McCammon C, et al. The compositional variability of eudialyte-group minerals[J]. Mineral. Mag. 2011, 75, 87–115.
[3] Goodenough K M, Schilling J, Jonsson E, et al. Europe's rare earth element resource potential: an overview of REE metallogenetic provinces and theirgeodynamic setting[J]. Ore Geol. Rev, . 2016, 72: 838–856.
[4] Paulick H, Machacek E. The global rare earth element exploration boom: an analysis of resources outside of China and discussion of development perspectives[J]. Res. Policy, 2017, 52:134-153. doi: 10.1016/j.resourpol.2017.02.002
[5] Stromeyer F. Summary of meeting 16 December 1819 [Fossilien. . . ] [C]. Göttingische Gelehrte Anzeigen, 1819(3): 1993-2003.
[6] 邬斌, 王汝成, 刘晓东, 等. 辽宁赛马碱性岩体异性石化学成分特征及其蚀变组合对碱性岩浆-热液演化的指示意义[J]. 岩石学报, 2018, 34(6):1741-1757. WU B, WANG R C, LIU X D, et al. Chemical composition and alteration assemblages of eudialyte in the Saima alkaline complex, Liaoning Province, and its implication for alkaline magmatic-hydrothermal evolution[J]. Acta Petrologica Sinica, 2018, 34(6):1741-1757.
WU B, WANG R C, LIU X D, et al. Chemical composition and alteration assemblages of eudialyte in the Saima alkaline complex, Liaoning Province, and its implication for alkaline magmatic-hydrothermal evolution[J]. Acta Petrologica Sinica, 2018, 34( 6) : 1741-1757.
[7] Wu F Y, Yang Yue Heng, Marks Michael A W, et al. 2010. In situ U–Pb, Sr, Nd and Hf isotopic analysis of eudialyte by LA-(MC)-ICP-MS[J]. Chemical Geology, 273(1-2): 8-34.
[8] Borst A M, A A Finch, H Friis, et al. Structural state of rare earth elements in eudialyte-group minerals[J]. Mineralogical Magazine, 2019, 84(1):19-34.
[9] Pfaff K, Wenzel T, Schilling J, et al. A fast and easy-to use approach to cation site assignment for eudialyte-group minerals[J]. Neues Jahrbuch fuer Mineralogie, 2010, 187:69-81. doi: 10.1127/0077-7757/2010/0166
[10] Marks M A W, Markl G. A global review on agpaitic rocks[J]. Earth-Sci. Rev., 2017, 173:229-258. doi: 10.1016/j.earscirev.2017.06.002
[11] Ratschbacher B C, Marks M A W, Bons P D, et al. Emplacement and geochemical evolution of highly evolved syenites investigated by a combined structural and geochemical field study: The lujavrites of the Ilímaussaq complex, SW Greenland[J]. Lithos, 2015, 231.
[12] Sørensen H. Agpaitic nepheline syenites: a potential source of rare elements[J]. Appl. Geochem., 1992(7):417-427.
[13] Kogarko L N, Lahaye Y, Brey G P. Plume-related mantle source of super-large rare metal deposits from the Lovozero and Khibina massifs on the Kola Peninsula, Eastern part of Baltic Shield: Sr, Nd and Hf isotope systematics[J]. Mineral. Petrol., 2010, 98:197-208. doi: 10.1007/s00710-009-0066-1
[14] Marks M A W, Hettmann K, Schilling J, et al. The mineralogical diversity of alkaline igneous rocks: critical factors for the transition from miaskitic to agpaitic phase assemblages[J]. J. Petrol., 2011, 52:439-455. doi: 10.1093/petrology/egq086
[15] Sørensen H,. The agpaitic rocks - an overview[J]. Mineral. Mag., 1997, 61:485-498. doi: 10.1180/minmag.1997.061.407.02
[16] Schilling J, Marks M, Wenzel T, et al. Reconstruction of magmatic to subsolidus processes in an agpaitic system using eudialyte textures and composition: a case study from Tamazeght, Morocco[J]. Can. Mineral, 2009, 47:351-365. doi: 10.3749/canmin.47.2.351
[17] Kramm U, Kogarko L N. Nd and Sr isotope signatures of the Khibina und Lovozero agpaitic centres, Kola Alkaline Province, Russia[J]. Lithos, 1994, 32:225-242. doi: 10.1016/0024-4937(94)90041-8
[18] Mitchell R H, Liferovich R P. Subsolidus deuteric/hydrothermal alteration of eudialyte in lujavrite from the Pilansberg alkaline complex, South Africa[J]. Lithos, 2006, 91:352-372. doi: 10.1016/j.lithos.2006.03.025
[19] Hatch G P. TMR advanced rare-earth projects index. Technology Metal Research. March 2014. Available online: http://www.techmetalsresearch.com/metrics-indices/tmr-advanced-rare-earth-projects-index(accessed on 24 July 2017)
[20] 冯雪茹, 刘述平, 李超, 等. 由低浓度稀土溶液萃取回收稀土的研究[J]. 矿产综合利用, 2018, 39(1):17-21. FENG X R, LIU S P, LI C, et al. Study on the extraction and recovery of rare earth from low concentration rare earth solution[J]. Multipurpose Utilization of Mineral Resources, 2018, 39(1):17-21.
FENG X R, LIU S P, LI C, et al. Study on the extraction and recovery of rare earth from low concentration rare earth solution[J]. Multipurpose Utilization of Mineral Resources, 2018, 39(1): 17-21.
[21] 文伟, 陈福林, 余新文, 等. 某含硫萤石重晶石共伴生氟碳铈稀土矿硫脱除必要性及回收试验[J]. 矿产综合利用, 2019, 40(6):45-48. WEN W, CHEN F L, YU X W, et al. Experimental study on the necessity and recovery of sulfur removal from a fluorocarbon-cerium rare earth ore associated with fluorite barite[J]. Multipurpose Utilization of Mineral Resources, 2019, 40(6):45-48.
WEN W, CHEN F L, YU X W, et al. Experimental study on the necessity and recovery of sulfur removal from a fluorocarbon-cerium rare earth ore associated with fluorite barite[J]. Multipurpose Utilization of Mineral Resources, 2019, 40(6): 45-48.
-