Determination of Rare Earth Elements in a New Type of Sedimentary Rare Earth Ore by ICP-MS
-
摘要:
这是一篇矿物分析领域的论文。近年来我国地质科研人员在滇、黔地区发现了一种新型沉积型稀土矿,它既不同于氟碳铈矿和独居石矿,也不同南方离子型稀土矿,而是赋存于黏土岩中一种独特的稀土矿。本文通过对滇黔相邻区的不同矿点,不同品位的两个稀土样品的溶矿方法进行对比研究,并详细研究了关键稀土元素(Pr、Nd、Tb、Dy)配分、仪器参数的优化及关键稀土元素测定方法的准确度和精密度。结果表明采用密闭消解四酸溶矿体系为该新型沉积稀土矿的较佳溶矿方式,而ICP-MS为准确、高效的测定方法,并具有良好的精密度和准确度。
Abstract:This is an essay in the field of mineral analysis. In recent years, Chinese geological researchers have discovered a new type of sedimentary rare earth ore in Yunnan and Guizhou regions, which is not only different from bastnaesite and monazite, but also different from ionic rare earth ore in south of China, but a unique rare earth ore in clay rocks. In this paper, the ore dissolution methods of two rare earth samples with different grade from different mineral sites in adjacent areas of Yunnan and Guizhou are compared, and the distribution of key rare earth elements(Pr、Nd、Tb、Dy), the optimization of instrument parameters and the accuracy and precision of the determination method of key rare earth elements are studied in detail. The results show that the closed digestion system is the best method for the new deposit of rare earth ore, and ICP-MS is an accurate and efficient determination method with good precision and accuracy.
-
Key words:
- Mineral analysis /
- Sedimentary type /
- Key rare earth elements /
- Closed digestion /
- ICP-MS
-
-
表 1 不同体系下稀土总量及关键稀土元素的测定值/(g/t)
Table 1. Determination values of total rare earth elements and key rare earth elements in different systems
元素 四酸敞开体系 (四酸+硫酸)敞开体系 四酸密闭体系 (四酸+硫酸)密闭体系 碱熔体系 碱熔体系 DQ-001 DQ-002 DQ-001 DQ-002 DQ-001 DQ-002 DQ-001 DQ-002 DQ-001 DQ-002 DQ-001 DQ-002 TREO 2481 2244 2738 2156 3047 2474 2870 2284 2957 2382 2957 2382 Pr6O11 115 110 132 108 145 126 140 116 142 119 142 119 Nd2O3 360 403 387 408 424 443 374 391 381 405 381 405 Tb2O3 6.6 8.8 6.8 8.5 9.35 10.7 9.0 9.2 9.6 11.2 9.6 11.2 Dy2O3 40.7 46.3 41.4 45.4 53.8 53.1 49.9 49.0 57.0 56.4 57.0 56.4 表 2 关键稀土元素同位素及干扰
Table 2. Selection and interference of key rare earth elements isotopes
分析项 Mass(amu) 校正 潜在干扰项 模式(*) 电解槽气体A Pr 141 KED 5.0 Nd 146 BaO KED 5.0 Nd 142 -0.125653*Ce 140 Ce KED 5.0 Nd 144 -0.204803*Sm 147 Sm KED 5.0 Nd 143 KED 5.0 Nd 145 KED 5.0 Tb 159 NdO、PrO KED 5.0 Dy 163 NdO、SmO KED 5.0 Dy 164 -0.047902*Er 166 Er、NdO、SmO KED 5.0 Dy 156 -1.307908*Gd 157 Gd、CeO、BaO、LaO KED 5.0 Dy 158 -1.587220*Gd 157 Gd、NdO、PrO 、CeO KED 5.0 Dy 160 -1.396805*Gd 157 Gd、NdO、CeO、SmO KED 5.0 Dy 162 -0.004165*Er 166 Er、NdO KED 5.0 Dy 161 NdO KED 5.0 Dy 165 SmO KED 5.0 表 3 DQ-001稀土配分结果
Table 3. Rare earth partitioning results of DQ-001
名称 TREO LREE HREE La2O3 CeO2 Pr6O11 Nd2O3 Sm2O3 Eu2O3 含量/(g/t) 3047 2638 403 701 1300 145 424 61.7 6.97 配分/% 100.00 86.78 13.22 23.01 42.66 4.76 13.92 2.02 0.23 名称 Gd2O3 Tb4O7 Dy2O3 Ho2O3 Er2O3 Tm2O3 Yb2O3 Lu2O3 Y2O3 含量/(g/t) 52.0 9.35 53.8 10.8 31.2 4.45 27.4 3.99 215 配分/% 1.71 0.31 1.77 0.35 1.02 0.15 0.90 0.13 7.06 表 4 DQ-002稀土配分结果
Table 4. Rare earth partitioning results of DQ-002
名称 TREO LREE HREE La2O3 CeO2 Pr6O11 Nd2O3 Sm2O3 Eu2O3 含量/(g/t) 2474 2099 375 519 905 126 443 91.4 14.7 配分/% 100.00 85.00 15.00 20.98 36.56 5.09 17.91 3.69 0.59 名称 Gd2O3 Tb4O7 Dy2O3 Ho2O3 Er2O3 Tm2O3 Yb2O3 Lu2O3 Y2O3 含量/(g/t) 70.1 10.7 53.1 9.35 24.3 3.16 19.1 2.65 182 配分/% 2.83 0.43 2.15 0.38 0.98 0.13 0.77 0.11 7.36 表 5 两种沉积型稀土原矿中关键稀土元素的测定结果
Table 5. Determination results of key rare earth elements in two sedimentary rare earth ore types
元素 测定值/
(mg/t)加标量/
(mg/t)测定总量/
(mg/t)回收率/% Pr6O11 143.54 500 630.82 97.45 Nd2O3 425.43 1000 1390.53 96.51 Tb2O3 9.43 100 107.33 97.90 Dy2O3 54.10 100 158.56 104.46 Pr6O11 125.71 500 608.96 96.65 Nd2O3 442.43 1000 1411.24 96.88 Tb4O7 10.93 100 115.11 104.18 Dy2O3 53.41 100 158.60 105.19 表 6 两种综合原矿中关键稀土元素的方法精密度实验
Table 6. Precision test of two methods for synthesizing key rare earth elements in raw ore
DQ-001 DQ-002 元素 Pr6O11 Nd2O3 Tb4O7 Dy2O3 Pr6O11 Nd2O3 Tb4O7 Dy2O3 测定值 144.97 427.43 9.35 54.32 131.58 461.74 9.92 54.37 142.71 422.34 9.62 53.55 126.18 445.14 10.87 53.45 136.80 421.69 8.89 53.47 123.25 442.48 11.35 51.41 147.87 435.97 9.34 55.41 133.54 450.57 11.14 53.87 145.57 430.79 10.09 54.62 128.71 444.04 10.39 54.51 139.54 425.17 9.38 53.54 124.75 451.33 10.55 52.43 平均值 142.91 427.23 9.44 54.15 128.00 449.21 10.70 53.34 RSD/% 2.88 1.27 4.18 1.44 3.13 1.58 4.89 2.26 -
[1] Anne H Osborne, Ed C Hathorne, Johan Schijf, et al. The potential of sedimentary foraminiferal rare earth element patterns to trace water masses in the past[J]. Geochemistry Geophysics Geosystem, 2017, 18(4):1550-1568. doi: 10.1002/2016GC006782
[2] 季根源, 张洪平, 李秋玲, 等. 中国稀土矿产资源现状及其可持续发展对策[J]. 中国矿业, 2018, 27(8):9-16. JI G Y, ZHANG H P, LI Q L, et al. Current status of rare earth resources in China and strategies for its sustainable development[J]. China Mining Magazine, 2018, 27(8):9-16. doi: 10.12075/j.issn.1004-4051.2018.08.011
JI G Y, ZHANG H P, LI Q L, et al. Current status of rare earth resources in China and strategies for its sustainable development[J]. China Mining Magazine, 2018, 27(8): 9-16. doi: 10.12075/j.issn.1004-4051.2018.08.011
[3] 李潇雨, 惠博, 熊文良. 白云鄂博稀土资源综合利用现状概述[J]. 矿产综合利用, 2021(5):17-24. LI X Y, HUI B, XIONG W L. Overview of comprehensive utilization of rare earth resources in Bayan Obo[J]. Multipurpose Utilization of Mineral Resources, 2021(5):17-24. doi: 10.3969/j.issn.1000-6532.2021.05.003
LI X Y, HUI B, XIONG W L. Overview of comprehensive utilization of rare earth resources in Bayan Obo[J]. Multipurpose Utilization of Mineral Resources, 2021(5): 17-24. doi: 10.3969/j.issn.1000-6532.2021.05.003
[4] 朱爱美, 刘季花, 张辉, 等. 东海内陆架泥质区表层沉积物稀土元素的分布特征[J]. 海洋地质与第四纪地质, 2012, 32(1):1-10. ZHU A M, LIU J H, ZHANG H, et al. Distribution pattern of REES in the inner–shelf mud area of east China sea[J]. Marine Geology & Quaternary Geology, 2012, 32(1):1-10.
ZHU A M, LIU J H, ZHANG H, et al. Distribution pattern of REES in the inner–shelf mud area of east China sea [J]. Marine Geology & Quaternary Geology, 2012, 32(1): 1-10.
[5] 孙思瑶, 张婷婷, 周婷, 等. 碳酸盐岩中粘土的去除及碳酸盐矿物稀土元素的测定方法[J]. 浙江化工, 2016, 47(10):49-54. SUN S Y, ZHANG T T, ZHOU T, et al. The methods of removing clays from carbonate rocks and determination of rare[J]. Zhejiang Chemical Industry, 2016, 47(10):49-54. doi: 10.3969/j.issn.1006-4184.2016.10.013
SUN S Y, ZHANG T T, ZHOU T, et al. The methods of removing clays from carbonate rocks and determination of rare [J]. Zhejiang Chemical Industry, 2016, 47(10): 49-54. doi: 10.3969/j.issn.1006-4184.2016.10.013
[6] 吴石头, 王亚平, 孙德忠, 等. 电感耦合等离子体发射光谱法测定稀土矿石中15种稀土元素—四种前处理方法的比较[J]. 岩矿测试, 2014, 33(1):12-19. WU S T, WANG Y P, SUN D Z, et al. Determination of rare earth elements in rare earth ores by inductively coupled plasma-atomic emission spectrometry: a comparison of four different pretreatment methods[J]. Rock and Mineral Analysis, 2014, 33(1):12-19. doi: 10.3969/j.issn.0254-5357.2014.01.003
WU S T, WANG Y P, SUN D Z, et al. Determination of rare earth elements in rare earth ores by inductively coupled plasma-atomic emission spectrometry: a comparison of four different pretreatment methods[J]. Rock and Mineral Analysis, 2014, 33(1): 12-19. doi: 10.3969/j.issn.0254-5357.2014.01.003
[7] 石学法, 毕东杰, 黄牧, 等. 深海稀土分布规律与成矿作用[J]. 地质通报, 2021, 40(C1):195-208. SHI X F, BI D J, HUANG M, et al. Distribution and metallogenesis of deep-sea rare earth elements[J]. Geological Bulletin of China, 2021, 40(C1):195-208.
SHI X F, BI D J, HUANG M, et al. Distribution and metallogenesis of deep-sea rare earth elements[J]. Geological Bulletin of China, 2021, 40(C1): 195- 208.
[8] 邓善芝, 邓杰, 熊文良, 等. 深海沉积物中稀土资源特征及开发利用现状[J]. 矿产综合利用, 2018(4):17-22. DENG S Z, DENG J, XIONG W L, et al. Mineral features and current utilization situation of the rare earth resource in the deep-sea sediments[J]. Multipurpose Utilization of Mineral Resources, 2018(4):17-22. doi: 10.3969/j.issn.1000-6532.2018.04.004
DENG S Z, DENG J, XIONG W L, et al. Mineral features and current utilization situation of the rare earth resource in the deep-sea sediments[J]. Multipurpose Utilization of Mineral Resources, 2018 (4): 17-22. doi: 10.3969/j.issn.1000-6532.2018.04.004
[9] 徐力, 曾令熙, 熊文良, 等. 西太平洋深海底泥中稀土元素赋存状态[J]. 矿产综合利用, 2022(1):195-199. XU L, ZENG L X, XIONG W L, et al. Occurrence of rare earth elements in deep-sea mud from the Western Pacific Ocean[J]. Multipurpose Utilization of Mineral Resources, 2022(1):195-199. doi: 10.3969/j.issn.1000-6532.2022.01.028
XU L, ZENG L X, XIONG W L, et al. Occurrence of rare earth elements in deep-sea mud from the Western Pacific Ocean[J]. Multipurpose Utilization of Mineral Resources, 2022 (1): 195-199. doi: 10.3969/j.issn.1000-6532.2022.01.028
[10] 丁嘉榆, 邓国庆. 现行离子型稀土勘查规范存在的主要问题与修订建议[J]. 有色金属科学与工程, 2013, 4(4):96-102. DING J Y, DENG G Q. Main problems in the current ionic adsorption rare earth exploration specifications and their amendment proposals[J]. Nonferrous Metal Science and Engineering, 2013, 4(4):96-102. doi: 10.13264/j.cnki.ysjskx.2013.04.003
DING J Y, DENG G Q. Main problems in the current ionic adsorption rare earth exploration specifications and their amendment proposals[J]. Nonferrous Metal Science and Engineering, 2013, 4(4): 96-102 doi: 10.13264/j.cnki.ysjskx.2013.04.003
[11] 黄万抚, 邹志强, 钟祥熙, 等. 不同风化程度离子型稀土矿赋存特征及浸出规律研究[J]. 中国稀土学报, 35(2): 253-261.
HUANG W F, ZOU Z Q , ZHONG X X, et al. Occurrence characteristics and leaching rules of different weathering rare earth ores[J]. Journal of the Chinese Society of Rare Earths, 35(2): 253-261.
[12] 程丽娅. 离子型稀土矿中离子稀土的ICP-AES测定方法研究[J]. 安徽地质, 2017, 27(2):147-149. CHENG L Y. Study on determination of rare earth ions in ion-absorbed rare earth mineral using ICP-AES[J]. Geology of Anhui, 2017, 27(2):147-149. doi: 10.3969/j.issn.1005-6157.2017.02.017
CHENG L Y. Study on determination of rare earth ions in ion-absorbed rare earth mineral using ICP-AES[J]. Geology of Anhui, 2017, 27(2): 147-149. doi: 10.3969/j.issn.1005-6157.2017.02.017
[13] 田恩源, 龚大兴, 赖杨, 等. 贵州威宁地区沉积型稀土含矿岩系成因与富集规律[J]. 地球科学, 2021, 46(8):2711-2731. TIAN E Y, GONG D X, LAI Y, et al. Genesis and enrichment of sedimentary rare earth in Weining Area, Guizhou Province[J]. Earth Science, 2021, 46(8):2711-2731.
TIAN E Y, GONG D X, LAI Y, et al. Genesis and enrichment of sedimentary rare earth in Weining Area, Guizhou Province[J]. Earth Science, 2021, 46(8): 2711-2731.
[14] 蒋晓丽, 龚大兴, 周家云, 等. 滇黔相邻区二叠系宣威组富稀土黏土岩综合研究进展[J]. 矿产综合利用, 2022(1):32-41. JIANG X L, GONG D X, ZHOU J Y, et al. The research progress and problems of rare earth elements of rare earth rich clay rock permian Xuanwei Formation in the Yunnan-Guizhou Border Region[J]. Multipurpose Utilization of Mineral Resources, 2022(1):32-41. doi: 10.3969/j.issn.1000-6532.2022.01.005
JIANG X L, GONG D X, ZHOU J Y, et al. The research progress and problems of rare earth elements of rare earth rich clay rock permian Xuanwei Formation in the Yunnan-Guizhou Border Region[J]. Multipurpose Utilization of Mineral Resources, 2022(1): 32-41. doi: 10.3969/j.issn.1000-6532.2022.01.005
[15] 王晓慧, 颜世强, 梁友伟. 黔西北地区沉积型稀土资源回收稀土研究现状及选矿实验探讨[J]. 矿产综合利用, 2022(2):135-141. WANG X H, YAN S Q, LIANG Y W, et al. Research status of rare earth recovery from sedimentary rare earth ore and discussion on beneficiation test in Northwest Guizhou[J]. Multipurpose Utilization of Mineral Resources, 2022(2):135-141.
WANG X H, YAN S Q, LIANG Y W, et al. Research status of rare earth recovery from sedimentary rare earth ore and discussion on beneficiation test in Northwest Guizhou[J]. Multipurpose Utilization of Mineral Resources, 2022(2): 135-141.
-