密闭消解—电感耦合等离子体光谱法测定稀有金属矿选冶流程样品中锂、铍、铌和钽

雷勇, 勾钰霞, 易建春, 赵朝辉, 潘刚, 余滔. 密闭消解—电感耦合等离子体光谱法测定稀有金属矿选冶流程样品中锂、铍、铌和钽[J]. 矿产综合利用, 2023, 44(4): 205-210. doi: 10.3969/j.issn.1000-6532.2023.04.032
引用本文: 雷勇, 勾钰霞, 易建春, 赵朝辉, 潘刚, 余滔. 密闭消解—电感耦合等离子体光谱法测定稀有金属矿选冶流程样品中锂、铍、铌和钽[J]. 矿产综合利用, 2023, 44(4): 205-210. doi: 10.3969/j.issn.1000-6532.2023.04.032
Lei Yong, Gou Yuxia, Yi Jianchun, Zhao Chaohui, Pan Gang, Yu Tao. Inductively Coupled Plasma Atomic Emission Spectrometric Determination of Lithium、Beryllium、Niobium and Tantalum in Sample of Beneficiation Process of Rare Metal Ore after Closed Digestion[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(4): 205-210. doi: 10.3969/j.issn.1000-6532.2023.04.032
Citation: Lei Yong, Gou Yuxia, Yi Jianchun, Zhao Chaohui, Pan Gang, Yu Tao. Inductively Coupled Plasma Atomic Emission Spectrometric Determination of Lithium、Beryllium、Niobium and Tantalum in Sample of Beneficiation Process of Rare Metal Ore after Closed Digestion[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(4): 205-210. doi: 10.3969/j.issn.1000-6532.2023.04.032

密闭消解—电感耦合等离子体光谱法测定稀有金属矿选冶流程样品中锂、铍、铌和钽

详细信息
    作者简介: 雷勇(1982-),男,工程师,主要从事分析方法研究
  • 中图分类号: TD982;P575

Inductively Coupled Plasma Atomic Emission Spectrometric Determination of Lithium、Beryllium、Niobium and Tantalum in Sample of Beneficiation Process of Rare Metal Ore after Closed Digestion

  • 这是一篇矿物分析领域的论文。采用盐酸、硝酸、氢氟酸、硫酸于聚四氟乙烯密闭消解罐中加热消解,酒石酸—稀盐酸介质提取,以电感耦合等离子体光谱法同时测定溶液中锂、铍、铌和钽。Li和Be在0~50 μg/mL、Nb2O5和Ta2O5在0~100 μg/mL范围内呈良好测现性关系,校准曲线相关系数r均大于0.9999,方法检出限分别为0.1 μg /g、0.5 μg /g、1.0 μg /g、0.1 μg /g。用于实际样品分析,加标回收率为94.6%~105.6%,锂、铍、铌、钽的相对标准偏差(n=11)分别为1.08%~7.04%、0.65%~13.06%、2.59~7.32%、2.02%~7.60%,用标准样品分析,测定值与认定值相符。

  • 加载中
  • 图 1  酒石酸浓度

    Figure 1. 

    表 1  标准溶液中锂、铍、铌、钽元素浓度

    Table 1.  Concentrations of Li 、Be、 Nb and Ta in the standard solutions

    标准溶液编号含量/(μg/mL)
    LiBeNb2O5Ta2O5
    10000
    20.50.50.50.5
    31111
    45555
    510101010
    650505050
    7100100
    下载: 导出CSV

    表 2  不同样品消解方法测定比较/%

    Table 2.  Comparision of determination results by different digestion method

    样品元素a常压高氯酸冒烟b常压硫酸冒烟
    Li2OBeONb2O5Ta2O5Li2OBeONb2O5Ta2O5
    样品15.490.180.07480.03235.470.220.07270.0291
    样品20.140.00380.00260.00120.150.00440.00270.0011
    样品31.370.04250.00230.00081.340.04950.00270.0009
    样品45.340.220.00340.00245.260.290.00360.0031
    样品元素c密闭高氯酸冒烟d密闭硫酸冒烟
    Li2OBeONb2O5Ta2O5Li2OBeONb2O5Ta2O5
    样品15.480.230.08090.04125.490.250.08110.0391
    样品20.140.00580.00220.00130.140.00620.00200.0012
    样品31.320.06680.00230.00081.330.06910.00310.0010
    样品45.310.350.00360.00255.230.390.00370.0033
    下载: 导出CSV

    表 3  加标回收(n=3)

    Table 3.  Standerd addition recovery (n=3)

    样品Li2OBeO
    样品含量/%加入量/%测定平均值/%回收率/%样品含量/%加入量/%测定平均值/%回收率/%
    A15.49510.3096.20.250.250.4998.3
    A20.14410.10.2421980.00620.010.0168105.6
    A31.3312.34101.30.06910.10.1712102.1
    A45.23510.1297.70.390.50.8897.66
    样品Nb2O5Ta2O5
    样品含量/%加入量/%测定平均值/%回收率/%样品含量/%加入量/%测定平均值/%回收率/%
    A10.08110.10.180299.10.03910.050.0901101.9
    A20.00200.00250.004494.680.00120.0010.002296.4
    A30.00310.00250.005596.20.0010.0010.002095.2
    A40.00370.00250.0062101.90.00330.0050.008297.7
    下载: 导出CSV

    表 4  方法的精密度和准确度

    Table 4.  Precision and the accuracy of the method

    标准物质编号Li2OBeONb2O5Ta2O5
    GBW07152-10.460.0180.00310.0040
    GBW07152-20.460.0170.00300.0044
    GBW07152-30.440.0180.00280.0050
    GBW07152-40.450.0190.00330.0047
    GBW07152-50.440.020.00290.0048
    GBW07152-60.470.0170.00310.0050
    GBW07152-70.450.0180.00270.0051
    GBW07152-80.460.0190.00320.0045
    GBW07152-90.460.0180.00280.0047
    GBW07152-100.460.0170.00300.0051
    GBW07152-110.440.0170.00260.0046
    测定平均值/%0.450.0180.00300.0047
    认定值/%0.460.0180.00270.0049
    RSD/%2.285.567.217.17
    标准物质编号Li2OBeONb2O5Ta2O5
    GBW07154-10.780.0320.00460.0083
    GBW07154-20.790.0340.00480.0081
    GBW07154-30.810.0330.00520.0086
    GBW07154-40.760.0330.00460.0094
    GBW07154-50.780.0320.00500.0086
    GBW07154-60.790.0340.00480.0088
    GBW07154-70.770.0310.00440.0089
    GBW07154-80.800.0300.00460.0085
    GBW07154-90.780.0330.00490.0084
    GBW07154-100.770.0360.00430.0082
    GBW07154-110.790.0350.00510.0085
    测定平均值/%0.780.0330.00480.0086
    认定值/%0.790.0330.00420.0089
    RSD/%1.845.255.924.23
    标准物质编号Li2OBeONb2O5Ta2O5
    GBW07183-13.00
    GBW07183-23.01
    GBW07183-33.00
    GBW07183-43.02
    GBW07183-52.99
    GBW07183-62.98
    GBW07183-73.01
    GBW07183-83.03
    GBW07183-93.02
    GBW07183-103.00
    GBW07183-113.05
    测定平均值/%3.01
    认定值/%未给定3.02未给定未给定
    RSD/%0.65
    标准物质编号Li2OBeONb2O5Ta2O5
    GBW07184-13.860.0180.00880.013
    GBW07184-23.800.0180.00820.013
    GBW07184-33.830.0160.00860.014
    GBW07184-43.920.0170.00930.013
    GBW07184-53.860.0190.00860.012
    GBW07184-63.880.0170.00830.014
    GBW07184-73.890.0180.00890.014
    GBW07184-83.800.0160.00850.012
    GBW07184-93.830.0170.00840.015
    GBW07184-103.910.0190.0080.012
    GBW07184-113.890.0160.00850.014
    测定平均值/%3.860.0170.0090.013
    认定值/%3.890.0160.00810.013
    RSD/%1.086.593.967.76
    标准物质编号Li2OBeONb2O5Ta2O5
    GBW07185-10.0110.00200.531.01
    GBW07185-20.0120.00180.501.03
    GBW07185-30.0120.00160.520.99
    GBW07185-40.0110.00130.491.02
    GBW07185-50.0110.00170.501.01
    GBW07185-60.0100.00190.510.98
    GBW07185-70.0100.00180.511.05
    GBW07185-80.0120.00170.531.03
    GBW07185-90.0110.00140.521.04
    GBW07185-100.0100.00150.501.02
    GBW07185-110.0110.00150.521.01
    测定平均值/%0.0110.00170.511.02
    认定值/%0.0110.00120.521.02
    RSD/%7.0412.722.602.01
    下载: 导出CSV
  • [1]

    吴西顺, 王登红, 黄文斌, 等. 全球锂矿及伴生铍铌钽的采选冶技术发展趋势[J]. 矿产综合利用, 2019(1):1-6. WU X S, WANG D H, HUANG W B, et al. Global technical development trends of litihium minerals and associated beryllium-niobium-tantalum exploitation[J]. Multipurpose Utilization of Mineral Resources, 2019(1):1-6. doi: 10.3969/j.issn.1000-6532.2019.01.001

    WU X S, WANG D H, HUANG W B, et al. Global technical development trends of litihium minerals and associated beryllium-niobium-tantalum exploitation[J]. Multipurpose Utilization of Mineral Resources, 2019(1): 1-6. doi: 10.3969/j.issn.1000-6532.2019.01.001

    [2]

    徐正震, 梁精龙, 李慧, 等. 含锂资源中锂的提取研究现状及展望[J]. 矿产综合利用, 2021(5):32-37. XU Z Z, LIANG J L, LI H, et al. Research status and prospects of lithium extraction from lithium containing resources[J]. Multipurpose Utilization of Mineral Resources, 2021(5):32-37. doi: 10.3969/j.issn.1000-6532.2021.05.005

    XU Z Z, LIANG J L, LI H, et al. Research status and prospects of lithium extraction from lithium containing resources[J]. Multipurpose Utilization of Mineral Resources, 2021(5): 32-37. doi: 10.3969/j.issn.1000-6532.2021.05.005

    [3]

    李成秀, 程仁举, 刘星. 我国锂辉石选矿技术研究现状及展望[J]. 矿产综合利用, 2021(5):1-8. LI C X, CHENG R J, LIU X. Research status and prospects of spodumene ore beneficiation technology in China[J]. Multipurpose Utilization of Mineral Resources, 2021(5):1-8. doi: 10.3969/j.issn.1000-6532.2021.05.001

    LI C X, CHENG R J, LIU X. Research status and prospects of spodumene ore beneficiation technology in China[J]. Multipurpose Utilization of Mineral Resources, 2021(5): 1-8. doi: 10.3969/j.issn.1000-6532.2021.05.001

    [4]

    何飞, 高利坤, 饶兵, 等. 从锂云母中提锂及综合利用的研究进展[J]. 矿产综合利用, 2022(5):82-89. HE F, GAO L K, RAO B, et al. Research progress on lithium extraction and comprehensive utilization from lepidolite[J]. Multipurpose Utilization of Mineral Resources, 2022(5):82-89.

    HE F, GAO L K, RAO B, et al. Research progress on lithium extraction and comprehensive utilization from lepidolite [J]. Multipurpose Utilization of Mineral Resources, 2022(5): 82-89.

    [5]

    高丹. 微波消解——电感耦合等离子体原子发射光谱法测定矿石样品中的铍[J]. 科技传播, 2010(18):167-168. GAO D. Determination of beryllium in ore samples by microwave digestion inductively coupled plasma atomic emission spectrometry[J]. Public Communication of Science & Technology, 2010(18):167-168.

    GAO D , et al. Determination of beryllium in ore samples by microwave digestion inductively coupled plasma atomic emission spectrometry[J]. Public Communication of Science & Technology, 2010(18): 167-168.

    [6]

    杨萍, 陈云红. ICP-AES法测定矿石中的BeO[J]. 分析试验室, 2002(5):16-17. YANG P, CHENG Y H. Determination of BeO in ores by ICP-AES[J]. Chinese Journal of Analysis Laboratory, 2002(5):16-17. doi: 10.3969/j.issn.1000-0720.2002.05.006

    YANG P, CHENG Y H , et al. Determination of BeO in ores by ICP-AES[J]. Chinese Journal of Analysis Laboratory, 2002(5): 16-17. doi: 10.3969/j.issn.1000-0720.2002.05.006

    [7]

    潘钢, 易建春. 恒温电热板湿法消解-ICP-AES对地质样品中铌和钽的连续测定[J]. 光谱实验室, 2012, 29(3):1597-1600. PAN G, YI J C. Continuous determination of niobium and tantalum in geological samples by ICP-AES with constant temperature electric heating plate wet digestion[J]. Chinese Journal of Spectroscopy Laboratory, 2012, 29(3):1597-1600. doi: 10.3969/j.issn.1004-8138.2012.03.073

    PAN G, YI J C , et al. Continuous determination of niobium and tantalum in geological samples by ICP-AES with constant temperature electric heating plate wet digestion[J]. Chinese Journal of Spectroscopy Laboratory, 2012, 29(3): 1597-1600. doi: 10.3969/j.issn.1004-8138.2012.03.073

    [8]

    韩晓, 方迪. 电感耦合等离子体原子发射光谱(ICP-AES)法测定岩矿中锂的含量[J]. 中国无机分析化学, 2021, 11(2):36-39. HAN X, FANG D. Determination of lithium in rock and ore by inductively coupled plasma atomic emission spectrometric(ICP-AES)[J]. Chinese Journal of Inorganic Analytical Chemistry, 2021, 11(2):36-39. doi: 10.3969/j.issn.2095-1035.2021.02.008

    HAN X, FANG D, et al. Determination of lithium in rock and ore by inductively coupled plasma atomic emission spectrometric(ICP-AES) [J]. Chinese Journal of Inorganic Analytical Chemistry, 2021, 11(2): 36-39. doi: 10.3969/j.issn.2095-1035.2021.02.008

    [9]

    姚玉玲, 赵朝辉, 刘淑君. 树脂交换分离—电感耦合等离子质谱法测定锡矿石的铌钽[J]. 矿产综合利用, 2021(5):146-151. YAO Y L, ZHAO C H, LIU S J. Determination of niobium and tantalum in tin ore by inductively coupled plasma mass spectrometry with resin exchange separation[J]. Multipurpose Utilization of Mineral Resources, 2021(5):146-151. doi: 10.3969/j.issn.1000-6532.2021.05.023

    YAO Y L, ZHAO C H, LIU S J. Determination of niobium and tantalum in tin ore by inductively coupled plasma mass spectrometry with resin exchange separation[J]. Multipurpose Utilization of Mineral Resources, 2021(5): 146-151. doi: 10.3969/j.issn.1000-6532.2021.05.023

    [10]

    赵学沛. 多种酸溶矿ICP-AES测定稀有金属矿中锂铍铌钽锡[J]. 化学研究与应用, 2017, 29(11):1714-1718. ZHAO X P. Determination of lithium, beryllium, niobium and tantalum in rare matal ores by four acid soluble ICP-AES[J]. Chemical Research and Application, 2017, 29(11):1714-1718. doi: 10.3969/j.issn.1004-1656.2017.11.017

    ZHAO X P , et al. Determination of lithium, beryllium, niobium and tantalum in rare matal ores by four acid soluble ICP-AES [J]. Chemical Research and Application, 2017, 29(11): 1714-1718. doi: 10.3969/j.issn.1004-1656.2017.11.017

    [11]

    胡兰基, 朱琳, 赵玉卿, 等. 电感耦合等离子体质谱法测定花岗伟晶岩中锂、铍、铷、铯、铌和钽[J]. 化工矿产地质, 2020, 42(4):348-351. HU L J, ZHU L, ZHAO Y Q, et al. Determination of Li、Be、Rb、Cs、Nb and Ta in granite-pegmatite by inductively coupled plasma mass spectrometric[J]. Geology of Chemical Minerals, 2020, 42(4):348-351. doi: 10.3969/j.issn.1006-5296.2020.04.011

    HU L J, ZHU L, ZHAO Y Q, et al. Determination of Li、Be、Rb、Cs、Nb and Ta in granite-pegmatite by inductively coupled plasma mass spectrometric [J]. Geology of Chemical Minerals, 2020, 42(4): 348-351. doi: 10.3969/j.issn.1006-5296.2020.04.011

  • 加载中

(1)

(4)

计量
  • 文章访问数:  888
  • PDF下载数:  94
  • 施引文献:  0
出版历程
收稿日期:  2023-05-04
刊出日期:  2023-08-25

目录