Research Progress on Extraction Technology of Rare Earth Elementsfrom Coal Ash
-
摘要:
这是一篇矿业工程领域的论文。粉煤灰中稀土元素的高值化利用,可有效缓解我国粉煤灰污染环境的问题,拓展稀土原料的供应链,保障稀土的战略安全。本文对近年来报道的粉煤灰中稀土元素提取技术研究进行了综述,介绍了酸法、碱熔酸浸和碱浸酸溶提取工艺,以及沉淀法和萃取法分离工艺的研究进展,对比了粉煤灰直接酸浸+化学沉淀法提取稀土工艺、粉煤灰直接酸浸+萃取法提取稀土工艺和粉煤灰碱熔+酸浸+化学沉淀法提取稀土工艺流程的优缺点。指出粉煤灰中稀土的提取技术研究工作可建立在已实现工业化的粉煤灰提取氧化铝和镓工艺流程上,探索粉煤灰中铝、镓和稀土等联合提取开发,不仅可加快粉煤灰中稀土提取的工业化步伐,还可进一步实现粉煤灰综合利用,提升粉煤灰的附加值。
Abstract:This is an essay in the field of mining engineering. High-value utilization of rare earths in fly ash can effectively alleviate the environmental pollution caused by fly ash in my country, expand the supply chain of rare earth raw materials, and ensure the strategic safety of rare earths. This article summarizes the research on rare earth element extraction technology reported from fly ash in recent years, and introduces the research progress of acid method, acid-base combined extraction technology and precipitation method and extraction method. The advantages and disadvantages of the three rare earth element extraction and separation processes are compared. It is pointed out that the research on the extraction technology of rare earth from fly ash can be based on the process flowsheet of the existing industrial equipment for extracting aluminum oxide and gallium from fly ash. The exploration of the collaborative extraction and development of aluminum, gallium and rare earth from fly ash can not only speed up the development of the extraction of rare earth from fly ash. The industrialization of the extraction and application of rare earths in coal ash also can further realize the comprehensive utilization of fly ash and increase the added value of fly ash.
-
Key words:
- Mining engineering /
- Fly ash /
- Rare earth /
- Extraction and separation /
- Industrialization
-
-
表 1 从粉煤灰中提取稀土工艺流程优缺点分析
Table 1. Analysis of the advantages and disadvantages of the extraction process of rare earth from fly ash
序号 工艺名称 优点 缺点 1 直接酸浸+化学沉淀提取REE工艺 1. 工艺操作简单,条件宽泛
2. 稀土浸出率高1. 酸浸时,其他元素一同浸出,除杂困难
2. 设备选型苛刻
3. 沉淀剂无法循环使用2 直接酸浸+
萃取法提取REE工艺1. 萃取设备选型可以借鉴成熟的稀土萃取设备
2. 萃取剂可以循环使用1. 萃取级数较多,流程长
2. 需要针对不同的杂质开发针对性的萃取剂3 碱熔+酸浸+化学沉
淀提取REE工艺1. 不受粉煤灰中晶相矿物的限制,适用于煤粉炉和循环流化床粉煤灰
2. 稀土浸出率高1. 焙烧能耗高
2. 沉淀剂无法循环使用 -
[1] Wojciech Franus and Małgorzata M. Wiatros-Motyka and Magdalena Wdowin. Coal fly ash as a resource for rare earth elements[J]. Environmental Science and Pollution Research, 2015, 22(12):9464-9474. doi: 10.1007/s11356-015-4111-9
[2] 中国稀土行业协会. 新兴产业推动稀土消费量显著增长[J]. 金属功能材料, 2020, 27(5):70. China Rare Earth Industry Association. Emerging industries promote a significant increase in rare earth consumption[J]. Metallic Functional Materials, 2020, 27(5):70.
China Rare Earth Industry Association. Emerging industries promote a significant increase in rare earth consumption[J]. Metallic Functional Materials, 2020, 27(5): 70.
[3] 邱麟惠. 中国稀土产业安全评估与对策研究[D]. 赣州: 江西理工大学, 2020.
QIU L H. Research on Safety Assessment and Countermeasures of China's Rare Earth Industry[D]. Ganzhou: Jiangxi University of Science and Technology, 2020.
[4] 李超, 刘述平, 惠博, 等. 重庆地区煤系高硫稀有金属复合矿稀土的铵盐浸出试验研究[J]. 矿产综合利用, 2017(5):55-58. LI C, LIU S P, HUI B, et al. Experimental study on ammonium salt leaching of rare earths from coal-based high-sulfur rare metal composite ore in Chongqing area[J]. Multipurpose Utilization of Mineral Resources, 2017(5):55-58. doi: 10.3969/j.issn.1000-6532.2017.05.012
LI C, LIU S P, HUI B, et al. Experimental study on ammonium salt leaching of rare earths from coal-based high-sulfur rare metal composite ore in Chongqing area[J]. Multipurpose Utilization of Mineral Resources, 2017(5): 55-58. doi: 10.3969/j.issn.1000-6532.2017.05.012
[5] 于秀兰, 郎晓川, 王之昌. 从包钢选矿厂尾矿中回收稀土的工艺研究[J]. 矿产综合利用, 2009(4):38-41. YU X L, LANG X C, WANG Z C. Study on the process of recovering rare earths from the tailings of Baotou Steel's concentrator[J]. Multipurpose Utilization of Mineral Resources, 2009(4):38-41.
YU X L, LANG X C, WANG Z C. Study on the process of recovering rare earths from the tailings of Baotou Steel's concentrator[J]. Multipurpose Utilization of Mineral Resources, 2009(4): 38-41.
[6] 刘大锐, 高桂梅, 池君洲, 等. 准格尔煤田黑岱沟露天矿煤中稀土及微量元素的分配规律[J]. 地质学报, 2018, 92(11):2368-2375. LIU D R, GAO G M, CHI J Z, et al. Distribution law of rare earth and trace elements in coal of Heidaigou open-pit mine in Zhungeer coal field[J]. Acta Geology, 2018, 92(11):2368-2375. doi: 10.3969/j.issn.0001-5717.2018.11.012
LIU D R, GAO G M, CHI J Z, et al. Distribution law of rare earth and trace elements in coal of Heidaigou open-pit mine in Zhungeer coal field[J]. Acta Geology, 2018, 92(11): 2368-2375. doi: 10.3969/j.issn.0001-5717.2018.11.012
[7] Seredin VV, Dai S. Coal deposits as potential alternative sources for lanthanides and yttrium[J]. Int J Coal Geol, 2012, 94:67-93. doi: 10.1016/j.coal.2011.11.001
[8] Jinhe Pan, Tiancheng Nie, Behzad Vaziri Hassas, et al. Recovery of rare earth elements from coal fly ash by integrated physical separation and acid leaching[J]. Chemosphere, 2020, 248.
[9] 《2019年中国粉煤灰行业分析报告-市场供需现状与发展动向研究》[EB/OL]. https://wenku.baidu.com/view/d703d42e32687e21af45b307e87101f69e31fbe4.html.
"Analysis Report of China's Fly Ash Industry in 2019-Research on Market Supply and Demand Status and Development Trends" [EB/OL]. https://wenku.baidu.com/view/d703d42e32687e21af45b307e87101f69e31fbe4.html.
[10] 吴国强, 汪涛, 王家伟, 等. 煤和煤矸石及其燃烧产物中稀土元素赋存形态研究[J]. 燃料化学学报, 2020, 48(12):1498-1505. WU G Q, WANG T, WANG J W, et al. Study on the occurrence of rare earth elements in coal, coal gangue and their combustion products[J]. Journal of Fuel Chemistry and Technology, 2020, 48(12):1498-1505. doi: 10.1016/S1872-5813(20)30094-3
WU G Q, WANG T, WANG J W, et al. Study on the occurrence of rare earth elements in coal, coal gangue and their combustion products[J]. Journal of Fuel Chemistry and Technology, 2020, 48(12): 1498-1505. doi: 10.1016/S1872-5813(20)30094-3
[11] Pan Jinhe, et al. Recovery of rare earth elements from coal fly ash through sequential chemical roasting, water leaching, and acid leaching processes[J]. Journal of Cleaner Production, 2020, 124725.
[12] Jinhe Pan, et al. Recovery of rare earth elements from coal fly ash by integrated physical separation and acid leaching[J]. Chemosphere, 2020, 248
[13] 张旭. 准格尔电厂粉煤灰中铝、锂、镓、稀土元素浸出工艺研究[D]. 邯郸: 河北工程大学, 2018.
ZHANG X. Research on the leaching process of aluminum, lithium, gallium and rare earth elements in the fly ash of Zhungeer Power Plant[D]. Handan: Hebei University of Technology, 2018.
[14] 曲学峰. 国华准格尔电厂粉煤灰中稀土提取工艺研究[D]. 邯郸: 河北工程大学, 2018.
QU X F. Study on the extraction process of rare earths in fly ash from Guohua Zhungeer Power Plant[D]. Handan: Hebei University of Engineering, 2018.
[15] Ross K Taggart, James C Hower, Gray S Dwyer, et al. Trends in the rare earth element content of U. S.-based coal combustion fly ashes[J]. Environment Science Technology, 2016, 50:5919-5926. doi: 10.1021/acs.est.6b00085
[16] Banerjee Riya, et al. A single-step process to leach out rare earth elements from coal ash using organic carboxylic acids[J]. Hydrometallurgy, 2021, 201
[17] 汤梦成. 碱熔-酸浸提取粉煤灰中稀土元素研究[D]. 北京: 中国矿业大学, 2019
TANG M C. Study on the extraction of rare earth elements from fly ash by alkali fusion-acid leaching[D]. Beijing: China University of Mining and Technology, 2019
[18] Mengcheng Tang et al. Study on extraction of rare earth elements from coal fly ash through alkali fusion – Acid leaching[J]. Minerals Engineering, 2019, 136:36-42. doi: 10.1016/j.mineng.2019.01.027
[19] 邵培. 高铝煤与煤灰中Li-Ga-REE等多元素共生组合特征及协同分离[D]. 北京: 中国矿业大学, 2019.
SHAO P. The characteristics of multi-element symbiotic combination and synergistic separation of Li-Ga-REE in high-alumina coal and coal ash[D]. Beijing: China University of Mining and Technology, 2019.
[20] 刘汇东. 重庆主要电厂燃煤产物的物质组成及粉煤灰的资源化利用[D]. 北京: 中国矿业大学(北京), 2015.
LIU H D. The material composition of coal-fired products of Chongqing's main power plants and the resource utilization of fly ash[D]. Beijing: China University of Mining and Technology (Beijing), 2015.
[21] 曹闪闪. 粉煤灰中稀土元素低温强化浸出研究[D]. 北京: 中国矿业大学, 2019.
CAO S S. Research on low-temperature enhanced leaching of rare earth elements in fly ash[D]. Beijing: China University of Mining and Technology, 2019.
[22] Zhen Wang, et al. Rare earth elements and yttrium in coal ash from the Luzhou power plant in Sichuan, Southwest China: Concentration, characterization and optimized extraction[J]. International Journal of Coal Geology, 2019, 203:1-14. doi: 10.1016/j.coal.2019.01.001
[23] Rosita Widya, Bendiyasa I Made, Perdana Indra, et al. Experimental Study of Rare Earth Element Enrichment from Indonesian Coal Fly Ash: Alkaline Leaching[J]. Key Engineering Materials, 2020, 5977:514-519.
[24] 吉万顺. 盘北粉煤灰浸出液中多金属离子下稀土元素的选择性萃取[D]. 北京: 中国矿业大学, 2020.
JI W S. Selective extraction of rare earth elements under polymetallic ions in Panbei fly ash leaching solution[D]. Beijing: China University of Mining and Technology, 2020.
[25] 王涛, 张新军. 煤中伴生矿产赋存状态及提取方法综述[J]. 矿产综合利用, 2019(4):21-25. WANG T, ZHANG X J. Summary of the occurrence status and extraction methods of associated minerals in coal[J]. Multipurpose Utilization of Mineral Resources, 2019(4):21-25. doi: 10.3969/j.issn.1000-6532.2019.04.004
WANG T, ZHANG X J. Summary of the occurrence status and extraction methods of associated minerals in coal[J]. Multipurpose Utilization of Mineral Resources, 2019 (4): 21-25. doi: 10.3969/j.issn.1000-6532.2019.04.004
[26] 王宏宾, 杜艳霞, 王永旺. 粉煤灰“一步酸溶法”提取氧化铝过程中钪的分布[J]. 稀土, 2020, 41(6):64-69. WANG H B, DU Y X, WANG Y W. The distribution of scandium in the process of extracting alumina from fly ash by "one-step acid solution"[J]. Rare Earths, 2020, 41(6):64-69.
WANG H B, DU Y X, WANG Y W. The distribution of scandium in the process of extracting alumina from fly ash by "one-step acid solution"[J]. Rare Earths, 2020, 41(6): 64-69
[27] 高志娟, 王相人. 煤粉炉粉煤灰提取氧化铝活化技术研究进展[J]. 无机盐工业, 2021, 53(2):24-27. GAO Z J, WANG X R. Research progress of activation technology of extracting alumina from pulverized coal ash[J]. Inorganic Salt Industry, 2021, 53(2):24-27.
GAO Z J, WANG X R. Research progress of activation technology of extracting alumina from pulverized coal ash[J]. Inorganic Salt Industry, 2021, 53(2): 24-27.
[28] 肖永丰. 粉煤灰提取氧化铝方法研究[J]. 矿产综合利用, 2020(4):156-162. XIAO Y F. Study on the method of extracting alumina from fly ash[J]. Multipurpose Utilization of Mineral Resources, 2020(4):156-162. doi: 10.3969/j.issn.1000-6532.2020.04.027
XIAO Y F. Study on the method of extracting alumina from fly ash[J]. Multipurpose Utilization of Mineral Resources, 2020(4): 156-162. doi: 10.3969/j.issn.1000-6532.2020.04.027
-