稀土尾矿对再生骨料混凝土性能的影响

景凯宇, 王克强. 稀土尾矿对再生骨料混凝土性能的影响[J]. 矿产综合利用, 2023, 44(5): 47-52, 57. doi: 10.3969/j.issn.1000-6532.2023.05.009
引用本文: 景凯宇, 王克强. 稀土尾矿对再生骨料混凝土性能的影响[J]. 矿产综合利用, 2023, 44(5): 47-52, 57. doi: 10.3969/j.issn.1000-6532.2023.05.009
Jing Kaiyu, Wang Keqiang. Effect of Rare Earth Tailing on Properties of Recycled Aggregate Concrete[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(5): 47-52, 57. doi: 10.3969/j.issn.1000-6532.2023.05.009
Citation: Jing Kaiyu, Wang Keqiang. Effect of Rare Earth Tailing on Properties of Recycled Aggregate Concrete[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(5): 47-52, 57. doi: 10.3969/j.issn.1000-6532.2023.05.009

稀土尾矿对再生骨料混凝土性能的影响

  • 基金项目: 国家自然科学基金项目(51974192)
详细信息
    作者简介: 景凯宇(1988-),男,博士研究生,研究方向为矿产综合利用、矿产改性混凝土
  • 中图分类号: TD983;TU528.041

Effect of Rare Earth Tailing on Properties of Recycled Aggregate Concrete

  • 这是一篇陶瓷及复合材料领域的文章。为进一步提高稀土尾矿利用率,本研究以稀土尾矿砂为细骨料设计制备了C30再生骨料混凝土,研究了尾矿砂的掺量对再生骨料混凝土的工作性、力学性能及耐久性的影响。实验结果表明:以稀土尾矿砂为细骨料能够制备出满足标准要求的C30及C40混凝土,随着尾矿砂掺量的增加,混凝土工作性降低,但完全采用尾矿砂作为细骨料的混凝土的和易性可达到使用需求。随着尾矿砂掺量的增加,混凝土微观孔隙结构致密化,抗压强度得到提高,当尾矿砂掺量为100%时混凝土的28 d抗压强度提升了34.9%。尾矿砂的掺入改善了混凝土的抗冻性能及抗碳化性能。

  • 加载中
  • 图 1  尾矿砂的级配曲线

    Figure 1. 

    图 2  和易性评定方法(sl-坍落度,sf-扩展度)

    Figure 2. 

    图 3  尾矿砂掺量对再生骨料混凝土坍落度的影响

    Figure 3. 

    图 4  尾矿砂掺量对再生骨料混凝土扩展度的影响

    Figure 4. 

    图 5  尾矿砂对再生骨料混凝土和易性的影响

    Figure 5. 

    图 6  尾矿砂掺量对再生骨料混凝土抗压强度的影响

    Figure 6. 

    图 7  尾矿砂掺量对再生骨料混凝土抗冻性能的影响

    Figure 7. 

    图 8  尾矿砂掺量对再生骨料混凝土碳化性能的影响

    Figure 8. 

    图 9  尾矿砂掺量对再生骨料混凝土微观孔隙的影响

    Figure 9. 

    图 10  C30混凝土养护28 d后SEM

    Figure 10. 

    表 1  原材料化学组成/%

    Table 1.  Chemical composition of raw materials

    原料CaOAl2O3SO3SiO2Fe2O3K2ONa2OMgOTiO2累计
    P.O42.5水泥79.153.40.8012.144.850.030.080.540.3499.51
    粉煤灰12.217.81.3156.16.122.560.360.902.1899.53
    下载: 导出CSV

    表 2  水泥基本物理性能

    Table 2.  Basic physical properties of cement

    标准稠度
    用水量/g
    安定性容重/
    (g/cm3
    凝结时间/
    min
    强度/MPa
    抗压抗折
    初凝终凝3 d28 d3 d28 d
    135合格3.1113020024.148.55.99.0
    下载: 导出CSV

    表 3  砂级配合比/%

    Table 3.  Sand grade mixing ratio

    粒径/mm4.752.361.180.60.30.150.075
    分计筛余4.216.119.218.530.68.92.5
    累计筛余4.220.339.55888.697.5100
    下载: 导出CSV

    表 4  混凝土配合比设计/(kg/m3

    Table 4.  Concrete mix ratio design

    编号稀土尾矿砂再生骨料水泥粉煤灰外加剂
    C30-008501010294561657.3
    C30-201706801010294561657.3
    C30-403405101010294561657.3
    C30-605103401010294561657.3
    C30-806801701010294561657.3
    C30-10085001010294561657.3
    下载: 导出CSV

    表 5  尾矿砂基本物理性能

    Table 5.  Basic physical properties of tailing sand

    表观密度
    /(g/cm3
    堆积密度
    /(g/cm3
    紧密堆积密度
    /(g/cm3
    含泥量
    /%
    2.501.321.619.30
    下载: 导出CSV
  • [1]

    Abaka-Wood G B, Zanin M, Addai-Mensah J, et al. Recovery of rare earth elements minerals from iron oxide–silicate rich tailings – part 1: magnetic separation[J]. Minerals Engineering, 2019, 136:50-61. doi: 10.1016/j.mineng.2019.02.026

    [2]

    李潇雨, 惠博, 熊文良, 等. 白云鄂博稀土资源综合利用现状概述[J]. 矿产综合利用, 2021(5):17-24. LI X Y, HUI B, XIONG W L, et al. Multipurpose utilization of rare earth resources in Bayan Obo[J]. Multipurpose Utilization of Mineral Resources, 2021(5):17-24.

    LI X Y, HUI B, XIONG W L, et al. Multipurpose utilization of rare earth resources in Bayan Obo[J]. Multipurpose Utilization of Mineral Resources, 2021(5): 17-24.

    [3]

    熊文良, 黄阳, 张丽军, 等. 稀土尾矿配料煅烧硅酸盐水泥熟料的实验研究[J]. 矿产综合利用, 2021(5):76-80. XIONG W L, HUANG Y, ZHANG L J, et al. Experimental study on calcination of portland cement clinker with rare earth tailings[J]. Multipurpose Utilization of Mineral Resources, 2021(5):76-80.

    XIONG W L, HUANG Y, ZHANG L J, et al. Experimental study on calcination of portland cement clinker with rare earth tailings[J]. Multipurpose Utilization of Mineral Resources, 2021(5): 76-80.

    [4]

    王维维, 李二斗, 王其伟, 等. 白云鄂博微细粒稀土矿工艺矿物学及浮选实验研究[J]. 矿产综合利用, 2021(5):81-85. WANG W W, LI E D, WANG Q W, et al. Study on process mineralogy and flotation test of the Bayan Obo finegrained rare earth ore[J]. Multipurpose Utilization of Mineral Resources, 2021(5):81-85.

    WANG W W, LI E D, WANG Q W, et al. Study on process mineralogy and flotation test of the bayan obo finegrained rare earth ore[J]. Multipurpose Utilization of Mineral Resources, 2021(5): 81-85.

    [5]

    秦玉芳, 马莹, 李娜. 白云鄂博尾矿库及其资源利用研究概况[J]. 矿产综合利用, 2020(6):100-109. QIN Y F, MA Y, LI N. Research overview of Bayan Obo tailings pond and its resource utilization[J]. Multipurpose Utilization of Mineral Resources, 2020(6):100-109.

    QIN Y F, MA Y, LI N. Research overview of Bayan Obo tailings pond and its resource utilization[J]. Multipurpose Utilization of Mineral Resources, 2020(6): 100-109.

    [6]

    Xiong Beibei, Demartino Cristoforo, Xu Jinjun, et al. High-strain rate compressive behavior of concrete made with substituted coarse aggregates: Recycled crushed concrete and clay bricks[J]. Construction and Building Materials, 2021, 301:123875. doi: 10.1016/j.conbuildmat.2021.123875

    [7]

    Kim Jeonghyun. Properties of recycled aggregate concrete designed with equivalent mortar volume mix design[J]. Construction and Building Materials, 2021, 301:124091. doi: 10.1016/j.conbuildmat.2021.124091

    [8]

    Chen Xue-Fei, Kou Shi-Cong, Xing Feng. Mechanical and durable properties of chopped basalt fiber reinforced recycled aggregate concrete and the mathematical modeling[J]. Construction and Building Materials, 2021, 298:123901. doi: 10.1016/j.conbuildmat.2021.123901

    [9]

    Lin ShuKen, Wu ChungHao. Improvement of bond srength and durability of recycled aggregate concrete incorporating high volume blast furnace slag[J]. Materials, 2021, 14(13):3708. doi: 10.3390/ma14133708

    [10]

    胡立志, 代飞, 李伟青, 等. 搅拌站废浆对水泥水化的影响[J]. 矿产综合利用, 2019(5):102-106. HU L Z, DAI F, LI W Q, et al. Study on effect of the slurry of concrete mmixing plant upon cement hydration[J]. Multipurpose Utilization of Mineral Resources, 2019(5):102-106.

    HU L Z, DAI F, LI W Q, et al. Study on effect of the slurry of concrete mmixing plant upon cement hydration[J]. Multipurpose Utilization of Mineral Resources, 2019(5): 102-106.

    [11]

    杨树桐, 李琳桢, 于淼. 碱激发海砂再生骨料混凝土的制备及其拉伸强度的确定[J]. 材料导报, 2021, 35(S2):176-182. YANG S T, LI L Z, YU M. Production and tensile strength determination of alkali activated sea sand recycled aggregate concrete[J]. Materials Review, 2021, 35(S2):176-182.

    YANG S T, LI L Z, YU M. Production and tensile strength determination of alkali activated sea sand recycled aggregate concrete[J]. Materials Review, 2021, 35(S2): 176-182.

    [12]

    刘春阳, 高英棋, 顾一凡, 等. 钢纤维大粒径再生粗骨料混凝土梁受弯性能试验研究[J]. 建筑结构, 2021, 51(21):68-72+89. LIU C Y, GAO Y Q, GU Y F, et al. Experimental study on the flexural behavior of concrete beams with large particle size recycled coarse aggregate and steel fiber[J]. Building Structure, 2021, 51(21):68-72+89.

    LIU C Y, GAO Y Q, GU Y F, et al. Experimental study on the flexural behavior of concrete beams with large particle size recycled coarse aggregate and steel fiber [J]. Building Structure, 2021, 51(21): 68-72+89.

  • 加载中

(10)

(5)

计量
  • 文章访问数:  550
  • PDF下载数:  115
  • 施引文献:  0
出版历程
收稿日期:  2022-01-04
刊出日期:  2023-10-25

目录