黄铁矿与砷黄铁矿氧化浮选分离技术的研究进展

贾紫珮, 宋翔宇, 王文, 许来福, 张红涛. 黄铁矿与砷黄铁矿氧化浮选分离技术的研究进展[J]. 矿产综合利用, 2023, 44(5): 112-119. doi: 10.3969/j.issn.1000-6532.2023.05.020
引用本文: 贾紫珮, 宋翔宇, 王文, 许来福, 张红涛. 黄铁矿与砷黄铁矿氧化浮选分离技术的研究进展[J]. 矿产综合利用, 2023, 44(5): 112-119. doi: 10.3969/j.issn.1000-6532.2023.05.020
Jia Zipei, Song Xiangyu, Wang Wen, Xu Laifu, Zhang Hongtao. Advances in the Separation of Pyrite and Arsenopyrite by Oxidative Flotation[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(5): 112-119. doi: 10.3969/j.issn.1000-6532.2023.05.020
Citation: Jia Zipei, Song Xiangyu, Wang Wen, Xu Laifu, Zhang Hongtao. Advances in the Separation of Pyrite and Arsenopyrite by Oxidative Flotation[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(5): 112-119. doi: 10.3969/j.issn.1000-6532.2023.05.020

黄铁矿与砷黄铁矿氧化浮选分离技术的研究进展

  • 基金项目: 国家自然科学基金(51874259)
详细信息
    作者简介: 贾紫珮(1997-),女,硕士研究生。研究方向为矿物加工工程
    通讯作者: 宋翔宇(1970-),男,博士生导师,主要从事矿物加工技术研究工作
  • 中图分类号: TD951

Advances in the Separation of Pyrite and Arsenopyrite by Oxidative Flotation

More Information
  • 这是一篇矿物加工工程领域的论文。黄铁矿和砷黄铁矿属于常见伴生硫化矿,因二者的晶体结构与表面性质十分相近,所以其浮选分离一直是重要的研究课题。砷硫两种矿物浮选过程中会发生不同程度氧化反应,利用氧化处理技术强化二者的氧化差异,改变矿物本身固有的浮选行为,可以实现砷黄铁矿与黄铁矿的分离。论文从黄铁矿和砷黄铁矿的自身晶体结构与表面性质入手,详细介绍了黄铁矿和砷黄铁矿在氧化浮选分离工艺及机理方面的研究现状及进展,并对研究方向进行了分析展望,希望能够为砷硫矿物的绿色、高效浮选分离提供一定的借鉴。

  • 加载中
  • 图 1  黄铁矿电极线性扫描伏安曲线

    Figure 1. 

    图 2  黄铁矿的CV曲线

    Figure 2. 

    图 3  在氧气暴露期间形成的氧化层结构 (a) 氧气下;(b) 空气下

    Figure 3. 

  • [1]

    铁颖, 熊召华, 胡梦忠, 等. 青海某微细粒浸染型难处理金矿石工艺矿物学研究[J]. 黄金, 2022, 43(4):43-47. TIE Y, XIONG Z H, HU M Z, et al. Process mineralogy of a microfine disseminated refractory gold ore from Qinghai[J]. Gold, 2022, 43(4):43-47.

    TIE Y, XIONG Z H, HU M Z, et al. Process mineralogy of a microfine disseminated refractory gold ore from Qinghai[J]. Gold, 2022, 43(4): 43-47.

    [2]

    肖坤明. 云南某低硫化物金矿可选性实验研究[J]. 矿产综合利用, 2019(2):57-59. XIAO K M. Experimental study on beneficiation of a low sulfide gold ore in Yunnan[J]. Multipurpose Utilization of Mineral Resources, 2019(2):57-59.

    XIAO K M. Experimental study on beneficiation of a low sulfide gold ore in Yunnan[J]. Multipurpose Utilization of Mineral Resources, 2019(2): 57 -59.

    [3]

    王广伟, 谢卓宏, 蒲江东. 某极难选金矿石工艺矿物学研究[J]. 矿产综合利用, 2019(6):69-73. WANG G W, XIE Z H, PU J D. Study on process mineralogy of an extremely refractory gold ore[J]. Multipurpose Utilization of Mineral Resources, 2019(6):69-73.

    WANG G W, XIE Z H, PU J D. Study on process mineralogy of an extremely refractory gold ore[J]. Multipurpose Utilization of Mineral Resources, 2019(6): 69-73.

    [4]

    Allison S A, Goold L A, Nicol M J, et al. A determination of the products of reaction betweer various sulfide minerals and aqueous xanthate solution, and a correlation of the products with electrode rest potentials[J]. Metallurgical and Materials Transactions B, 1972, 3(10):2613.

    [5]

    黄宇松, 郑永兴, 宁继来, 等. 含砷硫铁矿浮选分离研究现状与进展[J]. 矿冶, 2021(2):7-14. HUANG Y S, ZHENG Y X, NING J L, et al. Research status and development of flotation separation of arsenic-bearing pyrite[J]. Mining and Metallurgy, 2021(2):7-14.

    HUANG Y S, ZHENG Y X, NING J L, et al . Research status and development of flotation separation of arsenic-bearing pyrite[J]. Mining and Metallurgy, 2021(2): 7-14.

    [6]

    赵婉辰, 卢军燕, 孙明明. 黄铁矿尾矿泡沫混凝土力学性能和水化特征[J]. 矿产综合利用, 2022(3):32-36. ZHAO W C, LU J Y, SUN M M. Research on mechanical properties and hydration characteristics of pyrite tailings foam concrete[J]. Multipurpose Utilization of Mineral Resources, 2022(3):32-36.

    ZHAO W C, LU J Y, SUN M M. Research on mechanical properties and hydration characteristics of pyrite tailings foam concrete[J]. Multipurpose Utilization of Mineral Resources, 2022 (3): 32-36.

    [7]

    李丹龙, 赵艺, 孟宇航, 等. 一种新型阻垢剂对黄铁矿浮选的应用[J]. 矿产综合利用, 2019(5):52-55. LI D L, ZHAO Y, MENG Y H, et al. Research on the application of a new type scale inhibitor on the flotation of pyrite[J]. Multipurpose Utilization of Mineral Resources, 2019(5):52-55.

    LI D L, ZHAO Y, MENG Y H, et al. Research on the application of a new type scale inhibitor on the flotation of pyrite[J]. Multipurpose Utilization of Mineral Resources, 2019(5): 52-55.

    [8]

    朱一民, 周菁. 2018年浮选药剂的进展[J]. 矿产综合利用, 2019(4):1-10. ZHU Y M, ZHOU J. The development of flotation reagent in 2018[J]. Multipurpose Utilization of Mineral Resources, 2019(4):1-10.

    ZHU Y M, ZHOU J. The development of flotation reagent in 2018[J]. Multipurpose Utilization of Mineral Resources, 2019(4): 1-10.

    [9]

    罗宿星、陈华仕、牟青松, 等. 黄铁矿的吸附性能研究现状及进展[J]. 矿产综合利用, 2020(5):26-33. LUO S X, CHEN H S, MU Q S, et al. Research situation and progress of adsorption properties of pyrite[J]. Multipurpose Utilization of Mineral Resources, 2020(5):26-33.

    LUO S X, CHEN H S, MU Q S, et al. Research situation and progress of adsorption properties of pyrite[J]. Multipurpose Utilization of Mineral Resources, 2020(5): 26-33.

    [10]

    Burns R G, Vaughan D J. Interpretation of the reflectivity behavior of ore minerals[J]. American Mineralogist:Journal of Earth and Planetary Materials, 1970, 55(9-10):1576.

    [11]

    Klein C, Hurlbut C S, Dana J D. Manual of Mineralogy [J]. Manual of Mineralogy, 1993

    [12]

    李广明, 张洪恩, 臼井进. 毒砂和黄铁矿颗粒的表面化学组成[J]. 有色金属, 1992(2):25-28. LI G M, ZHANG H E, JIU J J. Sureface chemical comsitions of arsenopyrite and pyrite particless[J]. Nonferrous Metals, 1992(2):25-28.

    LI G M, ZHANG H E, JIU J J. Sureface chemical comsitions of arsenopyrite and pyrite particless[J]. Nonferrous Metals, 1992(2): 25-28.

    [13]

    Rimstidt J D, Vaughan D J. Pyrite oxidation: a state-of-the-art assessment of the reaction mechanism[J]. Geochimica et Cosmochimica Acta, 2003, 67(5):873. doi: 10.1016/S0016-7037(02)01165-1

    [14]

    Eggleston C M, Ehrhardt J J, Stumm W. Surface structural controls on pyrite oxidation kinetics: An XPS-UPS, STM, and modeling study[J]. American Mineralogist, 1996, 81(9-10):1036. doi: 10.2138/am-1996-9-1002

    [15]

    涂志红. 黄铁矿氧化过程中硫形态转化及其表面氧化电化学研究[D]. 广州: 华南理工大学, 2018.

    TU Z H. Studies of sulfur transformation in oxidation of pyrite and surface electrochemistry of pyrite oxidation[D]. Guangzhou: South China University of Technology, 2018.

    [16]

    Tu Z, Wan J, Guo C, et al. Electrochemical oxidation of pyrite in pH 2 electrolyte[J]. Electrochimica Acta, 2017, 239:25. doi: 10.1016/j.electacta.2017.04.049

    [17]

    Biegler T, Swift D. Anodic behaviour of pyrite in acid solutions[J]. Electrochimica Acta, 1979, 24(4):415. doi: 10.1016/0013-4686(79)87029-2

    [18]

    Tao D, Richardson P, Luttrell G, et al. Electrochemical studies of pyrite oxidation and reduction using freshly-fractured electrodes and rotating ring-disc electrodes[J]. Electrochimica Acta, 2003, 48(24):3615. doi: 10.1016/S0013-4686(03)00482-1

    [19]

    Stephen W I. F. Basolo and R. G. Pearson, mechanisms of inorganic reactions: a study of metal complexes in solution, 2nd edn. : j. wiley and sons, inc., new york, 1967, xi+701 pp., price 144 s[J]. Analytica Chimica Acta, 1969, 44(2):474.

    [20]

    Williamson M A, Rimstidt J D. The kinetics and electrochemical rate-determining step of aqueous pyrite oxidation[J]. Geochimica Et Cosmochimica Acta, 1994, 58(24):5443. doi: 10.1016/0016-7037(94)90241-0

    [21]

    Iii G W L. Pyrite oxidation and reduction: Molecular orbital theory considerations [J]. Geochimica et Cosmochimica Acta, 1987.

    [22]

    赵清平, 蓝卓越, 童雄. 铜离子对闪锌矿, 黄铁矿浮选的选择性活化机理研究[J]. 矿产综合利用, 2021(3):27-38. ZHAO Q P, LAN Z Y, TONG X. Activation mechanism of selective flotation of spahalerite and pyrite by copper[J]. Multipurpose Utilization of Mineral Resources, 2021(3):27-38.

    ZHAO Q P, LAN Z Y, TONG X. Activation mechanism of selective flotation of spahalerite and pyrite by copper [J]. Multipurpose Utilization of Mineral Resources, 2021(3): 27-38.

    [23]

    王成勇, 陈鹏, 谭金龙, 等. 基于密度泛函理论的水对黄铁矿和煤表面润湿性机理研究[J]. 矿产综合利用, 2022(1):157-163. WANG C Y, CHEN P, TAN J L, et al. Study on water wettability mechanism of pyrite and coal surfaces based on density functional theory[J]. Multipurpose Utilization of Mineral Resources, 2022(1):157-163.

    WANG C Y, CHEN P, TAN J L, et al. Study on water wettability mechanism of pyrite and coal surfaces based on density functional theory[J]. Multipurpose Utilization of Mineral Resources, 2022 (1): 157-163.

    [24]

    Zhu J, Xian H, Lin X, et al. Surface structure-dependent pyrite oxidation in relatively dry and moist air: Implications for the reaction mechanism and sulfur evolution[J]. Geochimica Et Cosmochimica Acta, 2018, 228:259. doi: 10.1016/j.gca.2018.02.050

    [25]

    Buckley A N, Walker G W. The surface composition of arsenopyrite exposed to oxidizing environments[J]. Applied Surface Science, 1988, 35(2):227. doi: 10.1016/0169-4332(88)90052-9

    [26]

    Nesbitt H, Muir I. Oxidation states and speciation of secondary products on pyrite and arsenopyrite reacted with mine waste waters and air[J]. Mineralogy and Petrology, 1998, 62(1):123.

    [27]

    Costa M, Do Rego A B, Abrantes L. Characterization of a natural and an electro-oxidized arsenopyrite: a study on electrochemical and X-ray photoelectron spectroscopy[J]. International Journal of Mineral Processing, 2002, 65(2):83. doi: 10.1016/S0301-7516(01)00059-X

    [28]

    Walker F P, Schreiber M E, Rimstidt J D. Kinetics of arsenopyrite oxidative dissolution by oxygen[J]. Geochimica et cosmochimica Acta, 2006, 70(7):1668. doi: 10.1016/j.gca.2005.12.010

    [29]

    邓仕明. 砷黄铁矿氧化及磷基铁膜钝化研究[D]. 绵阳: 西南科技大学, 2017.

    DENG S M. Study on arsenopyrite oxidation and iron phosphate coating on arsenopyrite[D]. Mianyang: Southwest University, 2017.

    [30]

    Schaufuss A G, Nesbitt H W, Scaini M J, et al. Reactivity of surface sites on fractured arsenopyrite (FeAsS) toward oxygen[J]. American Mineralogist, 2000, 85(11-12):1754. doi: 10.2138/am-2000-11-1219

    [31]

    Corkhill C L, Warren M C, Vaughan, et al. Investigation of the electronic and geometric structures of the (110) surfaces of arsenopyrite (FeAsS) and enargite (Cu3AsS4) [J]. Mineralogical Magazine, 2011, 75 (1) .

    [32]

    Reactivity of surface sites on fractured arsenopyrite (FeAsS) toward oxygen [J]. American Mineralogist, 2000, 85 (11-12): 1754.

    [33]

    Manjiao C, Zhengfu Z, Xinjun H, et al. Oxidation mechanism of the arsenopyrite surface by oxygen with and without water: Experimental and theoretical analysis[J]. Applied Surface Science, 2022, 573:151574. doi: 10.1016/j.apsusc.2021.151574

    [34]

    李洪祥, 代淑娟, 赵英杰. 氧化对毒砂可浮性的影响[J]. 矿冶工程, 2021, 41(6):10-12. LI H X, DAI S J, ZHAO Y J. Effect of oxidation on floatability of arsenopyrite[J]. Mining and Metallurgical Engineering, 2021, 41(6):10-12.

    LI H X, DAI S J, ZHAO Y J. Effect of oxidation on floatability of arsenopyrite[J]. Mining and Metallurgical Engineering, 2021, 41(6): 10-12.

    [35]

    Chen J H, Liu J, Li Y Q. Flotation separation of pyrite from arsenopyrite in the presence of oxidants [J]. Separation Science & Technology, 2018: 1.

    [36]

    吕炳军. 黄铁矿和毒砂的浮选分离实验研究[D]. 赣州: 江西理工大学, 2009.

    LV B J. Study on flotation separation of pyrite and arsenopyrite[D]. Ganzhou: Jiangxi University of Science and Technology, 2009.

    [37]

    Monte M, Dutra A, Albuquerque C, et al. The influence of the oxidation state of pyrite and arsenopyrite on the flotation of an auriferous sulphide ore[J]. Minerals Engineering, 2002, 15(12):1113. doi: 10.1016/S0892-6875(02)00177-2

    [38]

    张磊, 戴惠新, 杜五星. 铜锌硫化矿分离工艺现状[J]. 矿产综合利用, 2019(1):1-6. ZHANG L, DAI H X, DU W X. Research progress of copper-zinc sulfide ore separation technology[J]. Multipurpose Utilization of Mineral Resources, 2019(1):1-6.

    ZHANG L, DAI H X, DU W X . Research progress of copper-zinc sulfide ore separation technology[J]. Multipurpose Utilization of Mineral Resources, 2019(1): 1-6.

    [39]

    王锐刚, 郭方峥, 杨春. 黄铁矿废渣/H2O2体系处理造纸废水的研究[J]. 矿产综合利用, 2019(6):89-93. WANG R G, GUO F Z, YANG C. Treatment of papermaking wastewater in pyrite slag/H2O2 system[J]. Multipurpose Utilization of Mineral Resources, 2019(6):89-93.

    WANG R G, GUO F Z, YANG C. Treatment of papermaking wastewater in pyrite slag/H2O2 system[J]. Multipurpose Utilization of Mineral Resources, 2019(6): 89-93.

    [40]

    许大洪. 长坡选矿厂锌浮选尾矿综合回收研究[D]. 南宁: 广西大学, 2015.

    XU D H. Study on comprehensive recovery of zinc flotation tailings in Changpo concentrator[D]. Nanning: Guangxi University, 2015.

    [41]

    Yu L, Liu Q, Li S, et al. Depression mechanism involving Fe3+ during arsenopyrite flotation[J]. Separation and Purification Technology, 2019, 222:109. doi: 10.1016/j.seppur.2019.04.007

    [42]

    Dong Z, Zhu Y, Han Y, et al. Chemical oxidation of arsenopyrite using a novel oxidant—Chlorine dioxide[J]. Minerals Engineering, 2019, 139:105863. doi: 10.1016/j.mineng.2019.105863

    [43]

    Chandraprabha M N, Natarajan K A, Somasundaran P. Selective separation of pyrite from chalcopyrite and arsenopyrite by biomodulation using Acidithiobacillus ferrooxidans[J]. International Journal of Mineral Processing, 2005, 75(1-2):113. doi: 10.1016/j.minpro.2004.08.014

    [44]

    Zhang S, Yang H, Ma P, et al. Column bio-oxidation of low-grade refractory gold ore containing high-arsenic and high-sulfur: Insight on change in microbial community structure and sulfide surface corrosion[J]. Minerals Engineering, 2022, 175:107201. doi: 10.1016/j.mineng.2021.107201

    [45]

    Beattie M, Poling G. A study of the surface oxidation of arsenopyrite using cyclic voltammetry[J]. International Journal of Mineral Processing, 1987, 20(1-2):87. doi: 10.1016/0301-7516(87)90019-6

    [46]

    欧乐明, 冯其明, 卢毅屏, 等. 硫化矿物浮选体系中外控电位电极与矿物颗粒间的电偶腐蚀作用及其浮选[J]. 科学技术与工程, 2004(8):668-671. OU L M, FENG Q M, LU Y P, et al. Galvanic corrosion between external potential-control electrode and mineral in the flotation system of sulfide minerals and its significance on flotation[J]. Science Technology and Engineer, 2004(8):668-671. doi: 10.3969/j.issn.1671-1815.2004.08.008

    OU L M, FENG Q M, LU Y P, et al. Galvanic corrosion between external potential-control electrode and mineral in the flotation system of sulfide minerals and its significance on flotation[J]. Science Technology and Engineer, 2004, (8): 668-671. doi: 10.3969/j.issn.1671-1815.2004.08.008

    [47]

    胡茂圃. 腐蚀电化学[M]. 北京: 北京科技大学, 1991.

    HU M P. Corrosion electrochemistry[M]. Beijing: University of Science and Technology Beijing, 1991.

    [48]

    邓玉珍. 电化学处理及矿物浮选[J]. 国外金属矿选矿, 1996, 33(2):35-39. DENG Y Z. Electrochemical treatment and mineral flotation[J]. Metallic Ore Dressing Abroad, 1996, 33(2):35-39.

    DENG Y Z. Electrochemical treatment and mineral flotation[J]. Metallic Ore Dressing Abroad, 1996, 33 (2): 35-39.

    [49]

    王荣生. 外控电位电化学处理黄铁矿的浮选[J]. 矿冶, 2004, 13(2):28-32. WANG R S. Flotation of pyrite pretreated by electrochenmical ways under externally controlled voltages[J]. Mining and Metallurgy, 2004, 13(2):28-32.

    WANG R S. Flotation of pyrite pretreated by electrochenmical ways under externally controlled voltages[J]. Mining and Metallurgy, 2004, 13 (2): 28-32.

  • 加载中

(3)

计量
  • 文章访问数:  1474
  • PDF下载数:  303
  • 施引文献:  0
出版历程
收稿日期:  2022-11-14
刊出日期:  2023-10-25

目录