矿物和纳米材料对活性粉末混凝土性能的影响

李整建, 赵东升, 杨乐新. 矿物和纳米材料对活性粉末混凝土性能的影响[J]. 矿产综合利用, 2023, 44(5): 197-203. doi: 10.3969/j.issn.1000-6532.2023.05.031
引用本文: 李整建, 赵东升, 杨乐新. 矿物和纳米材料对活性粉末混凝土性能的影响[J]. 矿产综合利用, 2023, 44(5): 197-203. doi: 10.3969/j.issn.1000-6532.2023.05.031
Li Zhengjian, Zhao Dongsheng, Yang Lexin. Influence of Minerals and Nanomaterials on the Properties of Reactive Powder Concrete[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(5): 197-203. doi: 10.3969/j.issn.1000-6532.2023.05.031
Citation: Li Zhengjian, Zhao Dongsheng, Yang Lexin. Influence of Minerals and Nanomaterials on the Properties of Reactive Powder Concrete[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(5): 197-203. doi: 10.3969/j.issn.1000-6532.2023.05.031

矿物和纳米材料对活性粉末混凝土性能的影响

详细信息
    作者简介: 李整建(1978-),男,副教授,研究方向为建筑材料的制备
  • 中图分类号: TD985

Influence of Minerals and Nanomaterials on the Properties of Reactive Powder Concrete

  • 这是一篇陶瓷及复合材料领域的论文。利用硅粉、偏高岭土和纳米材料制备了活性粉末混凝土,并对矿物成分和纳米材料对活性粉末混凝土基本特性的影响规律进行了研究。硅粉和偏高岭土按照固定比例掺入,纳米二氧化硅和纳米氧化铝则分别按照水泥质量0.5%、1%、2%和3%的比例进行掺入。通过新拌混凝土的密度和流动度实验以及不同龄期下的强度实验对改性后的活性粉末混凝土的基本特性进行测试,结果表明随着纳米材料的掺入,混凝土的密度逐渐增加,而流动度则不断减小;抗压强度和抗折强度随着纳米材料掺入量的增加先增后减,由此得出纳米材料的较优掺量为1%~2%。高温实验结果表明活性粉末混凝土的抗压强度和抗折强度随着温度先增后减,较佳温度为200 ℃;温度导致的强度下降的速度为CSS>CSA>CMA>CMS。此外,SEM分析表明高温会导致混凝土内部出现劣化。

  • 加载中
  • 图 1  不同纳米材料掺量时的流动度

    Figure 1. 

    图 2  不同纳米材料掺量时的密度

    Figure 2. 

    图 3  不同纳米材料掺量时的抗压强度

    Figure 3. 

    图 4  不同龄期时试的抗压强度

    Figure 4. 

    图 5  不同纳米材料掺量时的抗折强度

    Figure 5. 

    图 6  不同龄期时试样的抗折强度

    Figure 6. 

    图 7  不同温度下试样的相对质量

    Figure 7. 

    图 8  不同温度下试样的抗压强度

    Figure 8. 

    图 9  不同温度下试样的抗折强度

    Figure 9. 

    图 10  不同温度下试样的SEM

    Figure 10. 

    表 1  水泥和矿物掺料的化学成分/%

    Table 1.  Chemical composition of cement and mineral admixtures

    材料SiO2Al2O3Fe2O3CaOMgOSO3TiO2烧失量
    水泥20.664.884.5865.740.882.1401.12
    硅粉33.9121.351.4530.229.480.190.852.55
    偏高岭土5337.52.51.60.140.0373.781.9
    下载: 导出CSV

    表 2  纳米材料的基本特性

    Table 2.  Basic characteristics of nanomaterials

    纳米材料密度/
    (g/cm3
    比表面积/
    (g/cm3
    直径/
    nm
    纯度/
    %
    二氧化硅2200.053099.5
    三氧化二铝2000.122099.6
    下载: 导出CSV

    表 3  试样编号及配比设计/kg

    Table 3.  Sample number and proportion design

    编号混凝土硅粉偏高
    岭土
    纳米二
    氧化硅
    纳米二
    氧化铝
    减水剂
    CS7502001275187.500030
    CSS0.5746.252001275187.503.75030
    CSS1742.52001275187.507.5030
    CSS27352001275187.5015030
    CSS3727.52001275187.5022.5030
    CSA0.5746.252001275187.5003.7530
    CSA1742.52001275187.5007.530
    CSA27352001275187.5001530
    CSA3727.52001275187.50022.530
    CM75020012750187.50030
    CMS0.5746.2520012750187.53.75030
    CMS1742.520012750187.57.5030
    CMS273520012750187.515030
    CMS3727.520012750187.522.5030
    CMS0.5746.2520012750187.503.7530
    CMS1742.520012750187.507.530
    CMS273520012750187.501530
    CMS3727.520012750187.5022.530
    下载: 导出CSV
  • [1]

    王晓飞. 活性粉末混凝土单轴循环压缩试验条件下力学特性研究[J]. 硅酸盐通报, 2019, 38(7):2321-2328. WANG X F. Study on mechanical properties of reactive powder concrete under uniaxial cyclic compression test[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(7):2321-2328.

    WANG X F. Study on mechanical properties of reactive powder concrete under uniaxial cyclic compression test[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(7): 2321-2328.

    [2]

    李新星, 杨才千, 周泉, 等. 基于正交试验的活性粉末混凝土强度及流动性研究[J]. 硅酸盐通报, 2019, 38(4):1201-1210. LI X X, YANG C Q, ZHOU Q, et al. Research on the strength and fluidity of reactive powder concrete based on orthogonal test[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(4):1201-1210.

    LI X X, YANG C Q, ZHOU Q, et al. Research on the strength and fluidity of reactive powder concrete based on orthogonal test[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(4): 1201- 1210.

    [3]

    孙婧, 刘宏波, 王宏, 等. 基于Design-expert的铁尾矿活性粉末混凝土配合比优化试验研究[J]. 硅酸盐通报, 2020, 39(3):762-769. SUN J, LIU H B, WANG H, et al. Experimental research on optimization of mixture ratio of reactive powder concrete with iron tailings based on design-expert[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(3):762-769.

    SUN J, LIU H B, WANG H, et al. Experimental research on optimization of mixture ratio of reactive powder concrete with iron tailings based on design-expert[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(3): 762-769.

    [4]

    王雪莲. 粉煤灰微珠活性粉末混凝土力学与收缩特性研究[J]. 硅酸盐通报, 2019, 38(10):3373-3377. WANG X L. Study on the mechanical and shrinkage characteristics of fly ash microbead reactive powder concrete[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(10):3373-3377.

    WANG X L. Study on the mechanical and shrinkage characteristics of fly ash microbead reactive powder concrete[J]. Bulletin of the Chinese Ceramic Society , 2019, 38(10): 3373-3377.

    [5]

    张一帆, 杜红秀, 石丽娜. 碳纤维及硅灰掺量对活性粉末混凝土强度和温敏性的影响[J]. 混凝土, 2019(7):79-81. ZHANG Y F, DU H X, SHI L N. The influence of carbon fiber and silica fume content on the strength and temperature sensitivity of reactive powder concrete[J]. Concrete, 2019(7):79-81.

    ZHANG Y F, DU H X, SHI L N. The influence of carbon fiber and silica fume content on the strength and temperature sensitivity of reactive powder concrete[J]. Concrete, 2019(7): 79-81.

    [6]

    李根, 胡康旭. 复掺纤维活性粉末混凝土高温力学性能研究[J]. 混凝土与水泥制品, 2019(2):48-51. LI G, HU K X. Study on high temperature mechanical properties of composite fiber reactive powder concrete[J]. Concrete and Cement Products, 2019(2):48-51.

    LI G, HU K X. Study on high temperature mechanical properties of composite fiber reactive powder concrete[J]. Concrete and Cement Products, 2019(2): 48-51.

    [7]

    赵洪, 黄向阳, 龙广成, 等. 生态型活性粉末混凝土性能实验研究[J]. 混凝土与水泥制品, 2020(6):90-93. ZHAO H, HUANG X Y, LONG G C, et al. Experimental study on the performance of ecological reactive powder concrete[J]. Concrete and Cement Products, 2020(6):90-93.

    ZHAO H, HUANG X Y, LONG G C, et al. Experimental study on the performance of ecological reactive powder concrete[J]. Concrete and Cement Products, 2020(6): 90-93.

    [8]

    Grzeszczyk S, Matuszek C A, Vejmelková E, et al. Reactive powder concrete containing basalt fibers: strength, abrasion and porosity[J]. Materials, 2020, 13(13):2948. doi: 10.3390/ma13132948

    [9]

    刘数华, 巫美强, 高志扬. 废弃玻璃粉在活性粉末混凝土中的应用研究[J]. 混凝土, 2019(7):125-127. LIU S H, WU M Q, GAO Z Y. Research on the application of waste glass powder in reactive powder concrete[J]. Concrete, 2019(7):125-127.

    LIU S H, WU M Q, GAO Z Y. Research on the application of waste glass powder in reactive powder concrete[J]. Concrete, 2019(7): 125-127.

    [10]

    石东升, 薛欣欣, 李科. 粒化高炉矿渣代砂活性粉末混凝土配合比及力学性能试验[J]. 混凝土, 2019(9):135-138. SHI D S, XUE X X. Experiment on the mix ratio and mechanical properties of granulated blast furnace slag instead of sand reactive powder concrete[J]. Concrete, 2019(9):135-138.

    SHI D S, XUE X X. Experiment on the mix ratio and mechanical properties of granulated blast furnace slag instead of sand reactive powder concrete[J]. Concrete, 2019(9): 135-138.

    [11]

    刘晓仙, 杜红秀, 徐瑶瑶. 复掺纤维对RPC高温后力学性能及超声规律的影响[J]. 混凝土, 2021(1):87-90+97. LIU X X, DU H X, XU Y Y. The effect of composite fiber on the mechanical properties and ultrasonic law of RPC after high temperature[J]. Concrete, 2021(1):87-90+97. doi: 10.3969/j.issn.1002-3550.2021.01.021

    LIU X X, DU H X, XU Y Y . The effect of composite fiber on the mechanical properties and ultrasonic law of RPC after high temperature [J]. Concrete, 2021(1): 87-90+97. doi: 10.3969/j.issn.1002-3550.2021.01.021

    [12]

    Sultan H K, Alyaseri I. Effects of elevated temperatures on mechanical properties of reactive powder concrete elements[J]. Construction and Building Materials, 2020, 261:120555. doi: 10.1016/j.conbuildmat.2020.120555

  • 加载中

(10)

(3)

计量
  • 文章访问数:  972
  • PDF下载数:  104
  • 施引文献:  0
出版历程
收稿日期:  2021-04-23
刊出日期:  2023-10-25

目录