-
摘要:
这是一篇矿物加工工程领域的论文。本文通过纯矿物浮选实验研究了Fe2+和Fe3+在油酸阴离子捕收剂体系下对石英的浮选行为的影响,并采用红外光谱分析、原子力显微镜成像分析和Zeta电位测定分析等方法,进行了Fe3+活化石英的机理研究。纯矿物浮选实验结果表明,Fe3+的活化作用比Fe2+的强,在以Fe3+为活化离子的条件下,油酸钠的捕收作用比亚油酸钠强;红外光谱分析和原子力显微镜成像分析结果表明,油酸钠难以在未经活化的石英矿物表面产生有效吸附,但油酸钠可以有效吸附在经过Fe3+活化后的石英表面;Zeta电位分析结果表明,在pH值为6.0时,Fe3+活化后的石英表面的正电位达到较大值,且活化后的石英基本呈正电性。
Abstract:This is an essay in the field of mineral processing engineering. The effect of Fe2+ and Fe3+ on the flotation behavior of quartz in the oleic acid anionic collector system was studied by pure mineral flotation test, and the mechanism of Fe3+ activated quartz was studied by infrared spectroscopy, atomic force microscopy imaging analysis and Zeta potential measurement analysis. The results of pure mineral flotation test showed that the activation effect of Fe3+ was stronger than that of Fe2+, and the capture effect of sodium oleate was stronger than that of sodium linoleate under the condition of Fe3+ as the activation ion. The results of infrared spectroscopy and atomic force microscopy showed that sodium oleate could not effectively adsorb on the surface of unactivated quartz minerals, but could effectively adsorb on the surface of quartz activated by Fe3+. The results of Zeta potential analysis showed that the positive potential of quartz surface activated by Fe3+ reached the maximum at pH 6.0, and the activated quartz was basically positive.
-
Key words:
- Mineral processing engineering /
- Flotation /
- Quartz /
- Iron ion /
- Anion collector /
- Activation
-
-
表 1 石英化学多元素分析结果/%
Table 1. Results of quartz chemical multi-element analysis
SiO2 Al2O3 P2O5 CaO Fe2O3 Cl 99.37 0.21 0.04 0.36 0.01 0.01 -
[1] 刘泽伟, 邹玄, 赵阳, 等. 某石英砂矿制取高纯石英工艺的研究[J]. 矿产综合利用, 2020(4):111-115. LIU Z W, ZOU X, ZHAO Y, et al. Study on the process of producing high-purity quartz from a quartz sand mine[J]. Multipurpose Utilization of Mineral Resources, 2020(4):111-115. doi: 10.3969/j.issn.1000-6532.2020.04.018
LIU Z W, ZOU X, ZHAO Y, et al. Study on the process of producing high-purity quartz from a quartz sand mine[J]. Multipurpose Utilization of Mineral Resources, 2020(4): 111-115. doi: 10.3969/j.issn.1000-6532.2020.04.018
[2] 王杨, 陈留慧. 某金矿尾矿提纯石英应用对比实验研究[J]. 矿产综合利用, 2021(2):159-162. WANG Y, CHEN L H. Study on comparative test for the application of purified quartz from a gold ore tailings[J]. Multipurpose Utilization of Mineral Resources, 2021(2):159-162. doi: 10.3969/j.issn.1000-6532.2021.02.027
WANG Y, CHEN L H. Study on comparative test for the application of purified quartz from a gold ore tailings [J]. Multipurpose Utilization of Mineral Resources, 2021(2): 159-162. doi: 10.3969/j.issn.1000-6532.2021.02.027
[3] León M, Martín P, Vila R, et al. Neutron irradiation effects on optical absorption of KU1 and KS-4V quartz glasses and Infrasil 301[J]. Fusion Engineering & Design, 2009, 84(7-11):1174-1178.
[4] Pyo, Sukhoon, Tafesse, et al. Effects of quartz-based mine tailings on characteristics and leaching behavior of ultra-high performance concrete[J]. Construction and Building Materials, 2018.
[5] 林敏, 裴振宇, 熊康, 等. 我国高纯石英制备技术现状[J]. 矿产综合利用, 2017(5):18-21. LIN M, PEI Z Y, XIONG K, et al. Situation of high-purity quartz preparation in China[J]. Multipurpose Utilization of Mineral Resources, 2017(5):18-21. doi: 10.3969/j.issn.1000-6532.2017.05.004
LIN M, PEI Z Y, XIONG K, et al. Situation of high-purity quartz preparation in China[J]. Multipurpose Utilization of Mineral Resources, 2017(5): 18-21. doi: 10.3969/j.issn.1000-6532.2017.05.004
[6] 吴中贤, 姜效军, 陶东平. 新型胶磷矿反浮选脱硅阳离子捕收剂实验研究[J]. 矿产综合利用, 2020(5):92-100. WU Z X, JIANG X J, TAO D P. Experimental study on a novel cationic collector for reverse flotation of collophane for silica removal[J]. Multipurpose Utilization of Mineral Resources, 2020(5):92-100. doi: 10.3969/j.issn.1000-6532.2020.05.013
WU Z X, JIANG X J, TAO D P. Experimental study on a novel cationic collector for reverse flotation of collophane for silica removal[J]. Multipurpose Utilization of Mineral Resources, 2020(5): 92-100. doi: 10.3969/j.issn.1000-6532.2020.05.013
[7] 徐廷航, 龙秉文, 张逸, 等. 磷矿反浮选脱硅药剂的合成与应用[J]. 矿产综合利用, 2021(3):57-63. XU T H, LONG B W, ZHANG Y, et al. Synthesis and application of silicon removal reagent for reverse flotation of phosphate rock[J]. Multipurpose Utilization of Mineral Resources, 2021(3):57-63.
XU T H, LONG B W, ZHANG Y, et al. Synthesis and application of silicon removal reagent for reverse flotation of phosphate rock[J]. Multipurpose Utilization of Mineral Resources, 2021(3): 57-63.
[8] Filippov L O, Severov V V, Filippova I V. An overview of the beneficiation of iron ores via reverse cationic flotation[J]. International Journal of Mineral Processing, 2014, 127:62-69. doi: 10.1016/j.minpro.2014.01.002
[9] 陈俐全, 张凌燕, 陈志强, 等. 铝离子对油酸钠浮选石英的影响及作用机理[J]. 金属矿山, 2018(1):120-124. CHEN L Q, ZHANG L Y, CHEN Z Q, et al. Effect and mechanism of aluminum ion on quartz flotation in the system of sodium oleate[J]. Metal Mine, 2018(1):120-124. doi: 10.19614/j.cnki.jsks.201801024
CHEN L Q, ZHANG L Y, CHEN Z Q, et al. Effect and mechanism of aluminum ion on quartz flotation in the system of sodium oleate[J]. Metal Mine, 2018(1): 120-124. doi: 10.19614/j.cnki.jsks.201801024
[10] Zhang J, Wang W, Liu J, et al. Fe(III) as an activator for the flotation of spodumene, albite, and quartz minerals[J]. Minerals Engineering, 2014.
[11] Liu A, Fan J C, Fan M Q. Quantum chemical calculations and molecular dynamics simulations of amine collector adsorption on quartz ( 0 1) surface in the aqueous solution[J]. International Journal of Mineral Processing, 2015, 134:1-10. doi: 10.1016/j.minpro.2014.11.001
[12] Potapova E, Grahn M, Holmgren A, et al. The effect of calcium ions and sodium silicate on the adsorption of a model anionic flotation collector on magnetite studied by ATR-FTIR spectroscopy[J]. Journal of Colloid & Interface Science, 2010, 345(1):96-102.
[13] 欧乐明, 叶家笋, 曾维伟, 等. 铁离子和亚铁离子对菱锌矿和石英浮选的影响[J]. 有色金属(选矿部分), 2012(6):79-82. OU L M, YE J S, ZENG W W, et al. Influence and mechanism of ferric and ferrous ions on flotation of smithsonite and quartz[J]. Nonferrous Metals(Mineral Processing Section), 2012(6):79-82.
OU L M, YE J S, ZENG W W, et al. Influence and mechanism of ferric and ferrous ions on flotation of smithsonite and quartz[J]. Nonferrous Metals(Mineral Processing Section), 2012(6): 79-82.
[14] 唐劭禹, 张凌燕, 张冲, 等. Fe3+对十二烷基磺酸钠捕收石英的活化作用研究[J]. 非金属矿, 2017, 40(5):79-81. TANG S Y, ZHANG L Y, ZHANG C, et al. Study on activation of sodium dodecyl sulfonate collecting quartz by Fe3+[J]. Non-Metallic Mines, 2017, 40(5):79-81. doi: 10.3969/j.issn.1000-8098.2017.05.024
TANG S Y, ZHANG L Y, ZHANG C, et al. Study on activation of sodium dodecyl sulfonate collecting quartz by Fe3+[J]. Non-Metallic Mines, 2017, 40(5): 79-81. doi: 10.3969/j.issn.1000-8098.2017.05.024
[15] 周海玲, 刘永胜. 油酸钠在红柱石与粉石英表面的吸附机理[J]. 矿产综合利用, 2020(2):198-202. ZHOU H L, LIU Y S. Adsorption mechanism of sodium oleate on andalusite[J]. Multipurpose Utilization of Mineral Resources, 2020(2):198-202. doi: 10.3969/j.issn.1000-6532.2020.02.036
ZHOU H L, LIU Y S. Adsorption mechanism of sodium oleate on andalusite[J]. Multipurpose Utilization of Mineral Resources, 2020(2): 198-202. doi: 10.3969/j.issn.1000-6532.2020.02.036
[16] 寇珏, 郭玉, 孙体昌, 等. 2种阴离子捕收剂在石英表面的吸附机理[J]. 中南大学学报(自然科学版), 2015, 46(11):4005-4014. KOU J, GUO Y, SUN T C, et al. Adsorption mechanism of two different anionic collectors on quartz surface[J]. Journal of Central South University(Science and Technology), 2015, 46(11):4005-4014.
KOU J, GUO Y, SUN T C, et al. Adsorption mechanism of two different anionic collectors on quartz surface[J]. Journal of Central South University(Science and Technology), 2015, 46(11): 4005-4014.
[17] 吴卫国, 孙传尧, 朱永楷. 有机螯合剂对活化石英的抑制及其作用机理[J]. 金属矿山, 2007(2):33-37. WU W G, SUN C Y, ZHU Y K. Depression of organic chelating agents on activated quartz its mechanism[J]. Metal Mine, 2007(2):33-37. doi: 10.3321/j.issn:1001-1250.2007.02.010
WU W G, SUN C Y, ZHU Y K. Depression of organic chelating agents on activated quartz its mechanism[J]. Metal Mine, 2007(2): 33-37. doi: 10.3321/j.issn:1001-1250.2007.02.010
-