-
摘要:
这是一篇陶瓷及复合材料领域的论文。随着新能源汽车产业迅速发展,动力锂离子电池产量急剧增加。然而,由于动力锂离子电池使用寿命短,即将面临大规模退役,因此对动力锂离子电池进行有效资源化管理十分必要。本文首先对动力锂离子电池主要组成成分进行介绍,并阐明了其进行正极材料回收前梯次利用和预处理进程,重点综述了废旧动力锂离子电池正极材料火法、湿法和生物法回收技术,提出了生物法回收在废旧动力锂离子电池正极材料资源化处置问题上面临机遇与挑战。本文成果将为动力锂离子电池绿色资源化回收提供参考,促进新能源汽车产业健康发展。
Abstract:This is an essay in the field of ceramics and composites. With the rapid development of the new energy vehicle industry, the production of power lithium-ion batteries has increased dramatically. However, due to the short service life of power Li-ion batteries and their imminent mass retirement, it is necessary to effectively manage power Li-ion batteries in a resourceful manner. This paper first introduces the main components of power lithium-ion batteries and clarifies the stepwise utilization and pre-treatment process before their cathode materials are recycled. It focuses on an overview of the thermal, wet and biological recycling technologies for used power lithium-ion battery cathode materials, and presents the opportunities and challenges faced by biological recycling in the resourceful disposal of used power lithium-ion battery cathode materials. Our results can provide a certain reference for the green resource-based recycling of power lithium-ion batteries and promote the healthy development of the new energy vehicle industry.
-
-
表 1 动力锂离子电池各组分
Table 1. Components of power lithium-ion batteries
名称 含量 主要类型 功能 正极材料 约80% 钴酸锂、锰酸锂、磷酸铁锂和三元材料(镍、钴和锰的聚合物) 正极材料的性能直接影响锂离子电池的性能,其成本也直接决定了电池的成本 负极材料 约80% 天然石墨和人造石墨 提高电池容量和循环性能,处于锂电池产业中游地区的核心 电解液 约80% 由高纯有机溶剂、电解质锂盐、必要的添加剂等原料在一定条件下按一定比例制成 在锂电池正负电极之间起到传导离子的作用,是锂离子电池高电压、高比能量的保证 隔膜 约80% 聚烯烃隔膜,主要由聚乙烯和聚丙烯制成 决定了电池的界面结构和内阻,直接影响电池的容量、循环和安全性能。性能优异的隔膜对提高电池的综合性能起着重要作用 外壳 约80% 钢壳、铝壳、镀镍铁壳、铝塑膜 抑制电池极化,减少热效应,提升倍率使用性能,提升统一性,新增加电池的配置寿命 辅助材料 约20% 粘结剂、导电剂、极耳、胶纸、封装材料等 保证活性物质制浆均匀性和安全性,并起粘接用途,将活性物质粘接到集流体上。 表 2 动力锂离子电池组分用量和价格对比
Table 2. Comparision of power lithium-ion batteries’ component dosage and price
名称 材料类型 产量/万t 价格/(万元/t) 正极材料及原辅料 磷酸铁锂(动力型) 34 16.0~16.5 正极材料及原辅料 磷酸铁锂(储能型) 34 14.8~15.2 正极材料及原辅料 钴酸锂 3.82 42~44 正极材料及原辅料 锰酸锂(容量型) 3.21 12.9~13.4 正极材料及原辅料 锰酸锂(动力型) 3.21 13.9~14.3 正极材料及原辅料 聚偏氟乙烯(PVDF)(国产) 6.6 40~60 正极材料及原辅料 聚偏氟乙烯(PVDF)(进口) 6.6 55~80 负极材料 人造石墨 55 4.3~8.5 负极材料 天然石墨 55 2.8~6.7 电解液 磷酸铁锂 34 5.6~8.5 电解液 钴酸锂 34 8.9~12.1 电解液 锰酸锂 34 4.9~7.3 电解液 碳酸二甲酯DMC 34 7500~8000 电解液 碳酸二乙酯DEC 34 1.3~1.52 电解液 碳酸甲乙酯EMC 34 1.275~1.49 电解液 碳酸丙烯酯PC 34 9600~12550 电解液 碳酸乙烯酯EC 34 7500~8450 隔膜 湿法基膜 56 1.4~3.3 隔膜 干法基膜 56 0.8~0.9 隔膜 湿法涂覆基膜 56 1.9~3.9 -
[1] 李金龙, 何亚群, 付元鹏, 等. 废弃锂离子电池正极材料酸浸出实验研究[J]. 矿产综合利用, 2020(2):128-134. LI J L, HE Y Q, FU Y P, et al. Study on leaching cathode materials of spent lithium-ion batteries[J]. Multipurpose Utilization of Mineral Resources, 2020(2):128-134.
LI J L, HE Y Q, FU Y P, et al. Study on leaching cathode materials of spent lithium-ion batteries[J]. Multipurpose Utilization of Mineral Resources, 2020(2): 128-134.
[2] 左培文, 朱培培, 邵丽青. 新能源汽车动力电池产业发展特点与趋势分析[J]. 汽车文摘, 2022(1):1-7. ZUO P W, ZHU P P, SHAO L Q. The development characteristics and trend analysis of power battery industry for new energy vehicles[J]. Automotive Digest, 2022(1):1-7. doi: 10.19822/j.cnki.1671-6329.20210203
ZUO P W, ZHU P P, SHAO L Q. The development characteristics and trend analysis of power battery industry for new energy vehicles[J]. Automotive Digest, 2022(1): 1-7. doi: 10.19822/j.cnki.1671-6329.20210203
[3] 吴西顺, 王登红, 杨添天, 等. 碳中和目标下的锂矿产业创新及颠覆性技术[J]. 矿产综合利用, 2022(2):1-8. WU X S, WANG D H, YANG T T, et al. Lithium mining industry innovation and disruptive technology under the goal of carbon neutrality[J]. Multipurpose Utilization of Mineral Resources, 2022(2):1-8. doi: 10.3969/j.issn.1000-6532.2022.02.001
WU X S, WANG D H, YANG T T, et al. Lithium mining industry innovation and disruptive technology under the goal of carbon neutrality[J]. Multipurpose Utilization of Mineral Resources, 2022(2): 1-8. doi: 10.3969/j.issn.1000-6532.2022.02.001
[4] 张淑英, 李天钰. 中国新能源汽车动力电池报废量预测与对策建议——基于蒙特卡洛模拟的测算[J]. 环境与可持续发展, 2019, 44(6):101-105. ZHANG S Y, LI T Y. Forecast and countermeasures of China’s new energy vehicle power battery scrap quantity: estimation based on Monte Carlo simulation[J]. Environment and Sustainable Development, 2019, 44(6):101-105. doi: 10.19758/j.cnki.issn1673-288x.201906101
ZHANG S Y, LI T Y. Forecast and countermeasures of China’s new energy vehicle power battery scrap quantity: estimation based on Monte Carlo simulation[J]. Environment and Sustainable Development, 2019, 44(6): 101-105. doi: 10.19758/j.cnki.issn1673-288x.201906101
[5] 于大勇. 动力电池如何念好“回收利用经”[N]. 中国高新技术产业导报, 2022-08-15(15).
YU D Y. How to read the power battery "recycling"[N]. China High-Tech Industry Herald, 2022-08-15(15).
[6] 徐正震, 梁精龙, 李慧, 等. 含锂资源中锂的提取研究现状及展望[J]. 矿产综合利用, 2021(5):32-37. XU Z Z, LIANG J L, LI H, et al. Research status and prospects of lithium extraction from lithium containing resources[J]. Multipurpose Utilization of Mineral Resources, 2021(5):32-37. doi: 10.3969/j.issn.1000-6532.2021.05.005
XU Z Z, LIANG J L, LI H, et al. Research status and prospects of lithium extraction from lithium containing resources[J]. Multipurpose Utilization of Mineral Resources, 2021(5): 32-37. doi: 10.3969/j.issn.1000-6532.2021.05.005
[7] 吴越, 裴锋, 贾蕗路, 等. 废旧锂离子电池中有价金属的回收技术进展[J]. 稀有金属, 2013, 37(2):320-329. WU Y, PEI F, JIA L L, et al. Overview of recovery technique of valuable metals from spent lithium-ion batteries[J]. Rare Metals, 2013, 37(2):320-329. doi: 10.3969/j.issn.0258-7076.2013.02.023
WU Y, PEI F, JIA L L, et al. Overview of recovery technique of valuable metals from spent lithium-ion batteries[J]. Rare Metals, 2013, 37(2): 320-329. doi: 10.3969/j.issn.0258-7076.2013.02.023
[8] 王光旭, 李佳, 许振明. 废旧锂离子电池中有价金属回收工艺的研究进展[J]. 材料导报, 2015, 29(7):113-123. WANG G X, LI J, XU Z M. Recycling valuable metals from spent lithium-ion batteries[J]. Materials Reports, 2015, 29(7):113-123.
WANG G X, LI J, XU Z M. Recycling valuable metals from spent lithium-ion batteries[J]. Materials Reports, 2015, 29(7): 113-123.
[9] 李健, 赵乾, 崔宏祥. 废旧手机锂离子电池回收利用效益分析[J]. 中国资源综合利用, 2007(5):15-18. LI J, ZHAO Q, CUI H X. Estimate analysis on the benefit from recycling and reusing of spent lithium-ion batteries for cellphones[J]. China Resources Comprehensive Utilization, 2007(5):15-18. doi: 10.3969/j.issn.1008-9500.2007.05.006
LI J, ZHAO Q, CUI H X. Estimate analysis on the benefit from recycling and reusing of spent lithium-ion batteries for cellphones[J]. China Resources Comprehensive Utilization, 2007(5): 15-18. doi: 10.3969/j.issn.1008-9500.2007.05.006
[10] 昝文宇, 马北越, 刘国强. 退役动力锂电池回收工艺研究进展[J]. 材料研究与应用, 2021, 15(3):297-305. ZAN W Y, MA B Y, LIU G Q. Research progress on recovery processes of decommissioned power lithium batteries[J]. Materials Research and Applications, 2021, 15(3):297-305. doi: 10.3969/j.issn.1673-9981.2021.03.015
ZAN W Y, MA B Y, LIU G Q. Research progress on recovery processes of decommissioned power lithium batteries[J]. Materials Research and Applications, 2021, 15(3): 297-305. doi: 10.3969/j.issn.1673-9981.2021.03.015
[11] 徐正震, 梁精龙, 李慧, 等. 废旧锂电池正极材料中有价金属的回收工艺研究进展[J]. 矿产综合利用, 2022(4):119-264. XU Z Z, LIANG J L, LI H, et al. Research progress of recovery process of valuable metals in cathode materials of waste lithium batteries[J]. Multipurpose Utilization of Mineral Resources, 2022(4):119-264. doi: 10.3969/j.issn.1000-6532.2022.04.021
XU Z Z, LIANG J L, LI H, et al. Research progress of recovery process of valuable metals in cathode materials of waste lithium batteries[J]. Multipurpose Utilization of Mineral Resources, 2022(4): 119-264. doi: 10.3969/j.issn.1000-6532.2022.04.021
[12] 李棉, 程琍琍, 杨幼明, 等. 锂离子电池回收利用技术研究进展[J]. 稀有金属, 2022, 46(3):349-366. LI M, CHENG L L, YANG Y M, et al. Development of Technology for spent lithium-ion batteries recycling: a review[J]. Rare Metals, 2022, 46(3):349-366. doi: 10.13373/j.cnki.cjrm.XY20020020
LI M, CHENG L L, YANG Y M, et al. Development of Technology for spent lithium-ion batteries recycling: a review[J]. Rare Metals, 2022, 46(3): 349-366. doi: 10.13373/j.cnki.cjrm.XY20020020
[13] 杨宇, 梁精龙, 李慧, 等. 废旧锂离子电池回收处理技术研究进展[J]. 矿产综合利用, 2018(6):7-12. YANG Y, LIANG J L, LI H, et al. Overview of recovery technique of spent lithium-ion batteries[J]. Multipurpose Utilization of Mineral Resources, 2018(6):7-12. doi: 10.3969/j.issn.1000-6532.2018.06.002
YANG Y, LIANG J L, LI H, et al. Overview of recovery technique of spent lithium-ion batteries[J]. Multipurpose Utilization of Mineral Resources, 2018(6): 7-12. doi: 10.3969/j.issn.1000-6532.2018.06.002
[14] 王苏杭, 李建林. 退役动力电池梯次利用研究进展[J]. 分布式能源, 2021, 6(2):1-7. WANG S H, LI J L. Research progress on echelon utilization of retired power batteries[J]. Distributed Energy, 2021, 6(2):1-7. doi: 10.16513/j.2096-2185.DE.2106030
WANG S H, LI J L. Research progress on echelon utilization of retired power batteries[J]. Distributed Energy, 2021, 6(2): 1-7. doi: 10.16513/j.2096-2185.DE.2106030
[15] 钟雪虎, 焦芬, 刘桐, 等. 废旧锂离子电池回收工艺概述[J]. 电池, 2018, 48(1):63-67. ZHONG X H, JIAO F, LIU T, et al. Overview of recovery technology for spent lithium-ion battery[J]. Battery, 2018, 48(1):63-67. doi: 10.19535/j.1001-1579.2018.01.017
ZHONG X H, JIAO F, LIU T, et al. Overview of recovery technology for spent lithium-ion battery[J]. Battery, 2018, 48(1): 63-67. doi: 10.19535/j.1001-1579.2018.01.017
[16] 郑旭, 林知微, 郭汾, 等. 动力电池梯次利用研究[J]. 电源技术, 2019, 43(4):702-705. ZHENG X, LIN Z W, GUO F, et al. Research on echelon use of power battery[J]. Chinese Journal of Power Sources, 2019, 43(4):702-705. doi: 10.3969/j.issn.1002-087X.2019.04.045
ZHENG X, LIN Z W, GUO F, et al. Research on echelon use of power battery[J]. Chinese Journal of Power Sources, 2019, 43(4): 702-705. doi: 10.3969/j.issn.1002-087X.2019.04.045
[17] 于璐, 张辉, 田培根, 等. 一种退役动力电池梯次利用储能系统安全评估方法[J]. 太阳能学报, 2022, 43(5):446-453. YU L, ZHANG H, TIAN P G, et al. A battery safety evaluation method for reuse of retired power battery in energy storage system[J]. Acta Energiae Solaris Sinica, 2022, 43(5):446-453. doi: 10.19912/j.0254-0096.tynxb.2022-0212
YU L, ZHANG H, TIAN P G, et al. A battery safety evaluation method for reuse of retired power battery in energy storage system[J]. Acta Energiae Solaris Sinica, 2022, 43(5): 446-453. doi: 10.19912/j.0254-0096.tynxb.2022-0212
[18] 孙丙香, 苏晓佳, 马仕昌, 等. 基于低频阻抗谱和健康特征融合的锂离子电池健康状态主动探测方法研究[J]. 电力系统保护与控制, 2022, 50(7):23-30. SUN B X, SU X J, MA S C, et al. An active detection method of lithium-ion battery health state based on low-frequency EIS and health feature fusion[J]. Power System Protection and Control, 2022, 50(7):23-30. doi: 10.19783/j.cnki.pspc.226001
SUN B X, SU X J, MA S C, et al. An active detection method of lithium-ion battery health state based on low-frequency EIS and health feature fusion[J]. Power System Protection and Control, 2022, 50(7): 23-30. doi: 10.19783/j.cnki.pspc.226001
[19] 张朝龙, 赵筛筛, 章博. 基于因子分析与K-means聚类的退役动力电池快速分选方法[J]. 电力系统保护与控制, 2021, 49(12):41-47. ZHANG C L, ZHAO S S, ZHANG B. A fast classification method based on factor analysis and K-means clustering for retired electric vehicle batteries[J]. Power System Protection and Control, 2021, 49(12):41-47. doi: 10.19783/j.cnki.pspc.201413
ZHANG C L, ZHAO S S, ZHANG B. A fast classification method based on factor analysis and K-means clustering for retired electric vehicle batteries[J]. Power System Protection and Control, 2021, 49(12): 41-47. doi: 10.19783/j.cnki.pspc.201413
[20] 严媛, 顾正建, 黄惠, 等. 梯次利用动力锂离子电池筛选方法[J]. 电池, 2018, 48(6):414-416. YAN Y, GU Z J, HUANG H, et al. Selecting method on secondary use of power lithium-ion battery[J]. Battery, 2018, 48(6):414-416. doi: 10.19535/j.1001-1579.2018.06.012
YAN Y, GU Z J, HUANG H, et al. Selecting method on secondary use of power lithium-ion battery[J]. Battery, 2018, 48(6): 414-416. doi: 10.19535/j.1001-1579.2018.06.012
[21] 谢乐琼, 王莉, 田光宇, 等. 锂离子电池一致性筛选新方法——串联充放电筛选[J]. 电源技术, 2020, 44(2):149-378. XIE L Q, WANG L, TIAN G Y, et al. Novel consistency screening for Li-ion batteries——charge/discharge in series[J]. Chinese Journal of Power Sources, 2020, 44(2):149-378. doi: 10.3969/j.issn.1002-087X.2020.02.002
XIE L Q, WANG L, TIAN G Y, et al. Novel consistency screening for Li-ion batteries——charge/discharge in series[J]. Chinese Journal of Power Sources, 2020, 44(2): 149-378. doi: 10.3969/j.issn.1002-087X.2020.02.002
[22] 高崧, 朱华炳, 刘征宇, 等. 基于K-means聚类的退役动力电池梯次利用成组方法[J]. 电源技术, 2020, 44(10):1479-2995. GAO S, ZHU H B, LIU Z Y, et al. Reutilization grouping of retired electric vehicle battery based on K-means clustering[J]. Chinese Journal of Power Sources, 2020, 44(10):1479-2995. doi: 10.3969/j.issn.1002-087X.2020.10.020
GAO S, ZHU H B, LIU Z Y, et al. Reutilization grouping of retired electric vehicle battery based on K-means clustering[J]. Chinese Journal of Power Sources, 2020, 44(10): 1479-2995. doi: 10.3969/j.issn.1002-087X.2020.10.020
[23] 魏梓轩, 韩晓娟, 李炫. 基于深度神经网络的梯次利用电池健康状态评估[J]. 太阳能学报, 2022, 43(5):518-524. WEI Z X, HAN X J, LI X. State of health assessment for echelon utilization batteries based on deep neural networks[J]. Acta Energiae Solaris Sinica, 2022, 43(5):518-524. doi: 10.19912/j.0254-0096.tynxb.2022-0550
WEI Z X, HAN X J, LI X. State of health assessment for echelon utilization batteries based on deep neural networks[J]. Acta Energiae Solaris Sinica, 2022, 43(5): 518-524. doi: 10.19912/j.0254-0096.tynxb.2022-0550
[24] 张文伟. 梯次电池在通信基站储能系统的应用价值[J]. 数字通信世界, 2021(7):222-223. ZHANG W W. Application value of ladder battery in communication base station energy storage system[J]. Digital Communication World, 2021(7):222-223. doi: 10.3969/J.ISSN.1672-7274.2021.07.107
ZHANG W W. Application value of ladder battery in communication base station energy storage system[J]. Digital Communication World, 2021(7): 222-223. doi: 10.3969/J.ISSN.1672-7274.2021.07.107
[25] 许林杰. 梯次利用磷酸铁锂电池在电动叉车上的应用研究[D]. 杭州: 浙江大学, 2020.
XU L J. Study on cascade utilization of lithium iron phosphate battery on electric forklift truck[D]. Hangzhou: Zhejiang University, 2020.
[26] 李建林, 李雅欣, 吕超, 等. 退役动力电池梯次利用关键技术及现状分析[J]. 电力系统自动化, 2020, 44(13):172-183. LI J L, LI Y X, LYU C, et al. Key technology and research status of cascaded utilization in decommissioned power battery[J]. Automation of Electric Systems, 2020, 44(13):172-183. doi: 10.7500/AEPS20191125006
LI J L, LI Y X, LYU C, et al. Key technology and research status of cascaded utilization in decommissioned power battery[J]. Automation of Electric Systems, 2020, 44(13): 172-183. doi: 10.7500/AEPS20191125006
[27] 覃俊桦, 鲍莹, 戴永强, 等. 锂离子动力电池回收利用现状及发展趋势[J]. 现代工业经济和信息化, 2021, 11(6):99-100. QIN J Y, BAO Y, DAI Y Q, et al. Recycling status and development trend of lithium-ion power batteries[J]. Modern Industrial Economy and Informationization, 2021, 11(6):99-100. doi: 10.16525/j.cnki.14-1362/n.2021.06.39
QING J Y, BAO Y, DAI Y Q, et al. Recycling status and development trend of lithium-ion power batteries[J]. Modern Industrial Economy and Informationization, 2021, 11(6): 99-100. doi: 10.16525/j.cnki.14-1362/n.2021.06.39
[28] 刘梦宁, 李晓强. 退役磷酸铁锂电池的梯次利用和正极材料回收方法现状[J]. 人工晶体学报, 2021, 50(11):2192-2203. LIU M N, LI X Q. Review on echelon utilization and recovery methods of cathode materials from retired lithium iron phosphate battery[J]. Journal of Synthetic Crystals, 2021, 50(11):2192-2203. doi: 10.3969/j.issn.1000-985X.2021.11.026
LIU M L, LI X Q. Review on echelon utilization and recovery methods of cathode materials from retired lithium iron phosphate battery[J]. Journal of Synthetic Crystals, 2021, 50(11): 2192-2203. doi: 10.3969/j.issn.1000-985X.2021.11.026
[29] 缪月晴, 张玉, 黄澳, 等. 废锂离子电池回收技术研究进展[J]. 现代盐化工, 2021, 48(1):7-23. MIAO Y Q, ZHANG Y, HUANG A, et al. Research progress of spent lithium-ion battery recycling technology[J]. Jiangsu Salt Science & Technology, 2021, 48(1):7-23. doi: 10.3969/j.issn.1005-880X.2021.01.004
MIAO Y Q, ZHANG Y, HUANG A, et al. Research progress of spent lithium-ion battery recycling technology[J]. Jiangsu Salt Science & Technology, 2021, 48(1): 7-23. doi: 10.3969/j.issn.1005-880X.2021.01.004
[30] 胡中求, 瞿军, 郭莉, 等. 球磨预处理强化铜冶炼烟灰中砷与有价金属高效分离[J]. 中国有色金属学报, 2020, 30(8):1915-1924. HU Z Q, QU J, GUO L, et al. Selective leaching of arsenic and valuable metals in copper smelting soot strengthened by ball milling pretreatment[J]. The Chinese Journal of Nonferrous Metals, 2020, 30(8):1915-1924. doi: 10.11817/j.ysxb.1004.0609.2020-35812
HU Z Q, QU J, GUO L, et al. Selective leaching of arsenic and valuable metals in copper smelting soot strengthened by ball milling pretreatment[J]. The Chinese Journal of Nonferrous Metals, 2020, 30(8): 1915-1924. doi: 10.11817/j.ysxb.1004.0609.2020-35812
[31] ZENG X L, LI J H. Innovative application of ionic liquid to separate Al and cathode materials from spent high-power lithium-ion batteries[J]. Journal of Hazardous Materials, 2014, 271:50-56. doi: 10.1016/j.jhazmat.2014.02.001
[32] 卫寿平, 孙杰, 周添, 等. 废旧锂离子电池中金属材料回收技术研究进展[J]. 储能科学与技术, 2017, 6(6):1196-1207. WEI S P, SUN J, ZHOU T, et al. Research development metals recovery from spent lithium-ion batteries[J]. Energy Storage Science and Technology, 2017, 6(6):1196-1207. doi: 10.12028/j.issn.2095-4239.2017.0072
WEI S P, SUN J, ZHOU T, et al. Research development metals recovery from spent lithium-ion batteries[J]. Energy Storage Science and Technology, 2017, 6(6): 1196-1207. doi: 10.12028/j.issn.2095-4239.2017.0072
[33] 孙亮. 废旧锂离子电池回收利用新工艺的研究[D]. 长沙: 中南大学, 2012.
SUN L. A novel reclamation progress for spent lithium-ion batteries[D]. Changsha: Central South University, 2012.
[34] GOLMOHAMMADZADEH R, FARIBORZ F, JONG B, et al. Banerjee. Current challenges and future opportunities toward recycling of spent lithium-ion batteries[J]. Renewable. and Sustainable Energy Reviews, 2022, 159:112202. doi: 10.1016/j.rser.2022.112202
[35] 周弋惟, 陈卓, 徐建鸿. 湿法冶金回收废旧锂电池正极材料的研究进展[J]. 化工学报, 2022, 73(1):85-96. ZHOU Y W, CHEN Z, XU J H. Progress and the prospect of recycling spent lithium battery cathode materials by hydrometallurgy[J]. CIESC Journal, 2022, 73(1):85-96.
ZHOU Y W, CHEN Z, XU J H. Progress and the prospect of recycling spent lithium battery cathode materials by hydrometallurgy[J]. CIESC Journal, 2022, 73(1): 85-96.
[36] 袁文辉, 邱定蕃, 王成彦. 还原熔炼失效锂离子电池的研究[J]. 有色金属(冶炼部分), 2007(4):5-33. YUAN W H, QIU D F, WANG C Y. Research on recycling of spent lithium-ion battery by reducing smelting process[J]. Nonferrous Metals(Extractive Metallurgy), 2007(4):5-33.
YUAN W H, QIU D F, WANG C Y. Research on recycling of spent lithium-ion battery by reducing smelting process[J]. Nonferrous Metals(Extractive Metallurgy), 2007(4): 5-33.
[37] XIAO S W, REN G X, XIE M Q, et al. Recovery of valuable metals from spent lithium-ion batteries by smelting reduction process based on MnO-SiO2-Al2O3slag system[J]. Journal of Sustainable Metallurgy, 2017, 3(4):703-710. doi: 10.1007/s40831-017-0131-7
[38] FU Y P, HE Y Q, YANG Y, et al. Microwave reduction enhanced leaching of valuable metals from spent lithium-ion batteries[J]. Journal of Alloys and Compounds, 2020, 832:154920. doi: 10.1016/j.jallcom.2020.154920
[39] 刘诚, 陈宋璇, 吕东, 等. 废旧动力电池回收关键技术探讨[J]. 中国有色冶金, 2018, 47(2):44-110. LIU C, CHEN S X, LYU D, et al. Discussion on the key technologies for spent power battery recovery[J]. China Nonferrous Metallurgy, 2018, 47(2):44-110. doi: 10.3969/j.issn.1672-6103.2018.02.012
LIU C, CHEN S X, LYU D, et al. Discussion on the key technologies for spent power battery recovery[J]. China Nonferrous Metallurgy, 2018, 47(2): 44-110. doi: 10.3969/j.issn.1672-6103.2018.02.012
[40] 刘贵清, 王芳. 锂离子动力电池湿法回收工艺研究现状[J]. 中国资源综合利用, 2018, 36(5):88-92. LIU G Q, WANG F. Status of power lithium-ion battery recycle technology[J]. China Resources Comprehensive Utilization, 2018, 36(5):88-92. doi: 10.3969/j.issn.1008-9500.2018.05.028
LIU G Q, WANG F. Status of power lithium-ion battery recycle technology[J]. China Resources Comprehensive Utilization, 2018, 36(5): 88-92. doi: 10.3969/j.issn.1008-9500.2018.05.028
[41] 杜璞欣, 周吉奎, 宋卫锋, 等. 废旧锂电池正极材料回收技术研究进展[J]. 有色金属工程, 2020, 10(4):57-64. DU P X, ZHOU J K, SONG W F, et al. Research progress on recovery technology of cathode materials for spent lithium batteries[J]. Nonferrous Metals Engineering, 2020, 10(4):57-64. doi: 10.3969/j.issn.2095-1744.2020.04.009
DU P X, ZHOU J K, SONG W F, et al. Research progress on recovery technology of cathode materials for spent lithium batteries[J]. Nonferrous Metals Engineering, 2020, 10(4): 57-64. doi: 10.3969/j.issn.2095-1744.2020.04.009
[42] 黎华玲, 陈永珍, 宋文吉, 等. 湿法回收退役三元锂离子电池有价金属的研究进展[J]. 化工进展, 2019, 38(2):921-932. LI H L, CHEN Y Z, SONG W J, et al. Research progress on the recovery of valuable metals in retired LiNixCoyMnzO2 batteries by wet process[J]. Chemical Industry and Engineering Progress, 2019, 38(2):921-932. doi: 10.16085/j.issn.1000-6613.2018-0359
LI H L, CHEN Y Z, SONG W J, et al. Research progress on the recovery of valuable metals in retired LiNixCoyMnzO2 batteries by wet process[J]. Chemical Industry and Engineering Progress, 2019, 38(2): 921-932. doi: 10.16085/j.issn.1000-6613.2018-0359
[43] 徐政和, 刘振达, 王树宾, 等. 湿法回收废旧锂离子电池有价金属的研究进展[J]. 中国矿业大学学报, 2022, 51(3):454-465. XU Z H, LIU Z D, WANG S B, et al. Review on hydrometallurgical recovery of valuable metals from spent lithium-ion batteries[J]. Journal of China University of Mining & Technology, 2022, 51(3):454-465. doi: 10.3969/j.issn.1000-1964.2022.3.zgkydxxb202203006
XU Z H, LIU Z D, WANG S B, et al. Review on hydrometallurgical recovery of valuable metals from spent lithium-ion batteries[J]. Journal of China University of Mining & Technology, 2022, 51(3): 454-465. doi: 10.3969/j.issn.1000-1964.2022.3.zgkydxxb202203006
[44] SWAIN B, JEONG J K, LEE J C, et al. Hydrometallurgical process for recovery of cobalt from waste cathodic active material generated during manufacturing of lithium-ion batteries[J]. Journal of Power Sources, 2007, 167(2):536-544. doi: 10.1016/j.jpowsour.2007.02.046
[45] ZHOU S Y, ZHANG Y J, MENG Q, et al. Recycling of LiCoO2 cathode material from spent lithium ion batteries by ultrasonic enhanced leaching and one-step regeneration[J]. Journal of Environmental Management, 2021, 277:111426. doi: 10.1016/j.jenvman.2020.111426
[46] NGUYEN V N H, LEE M S. Separation of Co(Ⅱ), Ni(Ⅱ), Mn(Ⅱ) and Li(Ⅰ) from synthetic sulfuric acid leaching solution of spent lithium ion batteries by solvent extraction[J]. Journal of Chemical Technology & Biotechnology, 2021, 96(5):1205-1217.
[47] KUMAR J, SHEN X, LI B, et al. Selective recovery of Liand FePO4 from spent LiFePO4 cathode scraps by organic acids and the properties of the regenerated LiFePO4[J]. Waste Management, 2020, 113:32-40. doi: 10.1016/j.wasman.2020.05.046
[48] 蒋磊, 周怀阳, 彭晓彤. 广东云浮硫铁矿山氧化亚铁硫杆菌的分离及生长规律研究[J]. 高校地质学报, 2006(1):93-97. JIANG L, ZHOU H Y, PENG X T. Isolation of a strain of acidithiobacillus ferrooxidans from Yunfu sulfide mine in Guangdong province and studies on its growth rule[J]. Geological Journal of China Universities, 2006(1):93-97. doi: 10.3969/j.issn.1006-7493.2006.01.010
JIANG L, ZHOU H Y, PENG X T. Isolation of a strain of acidithiobacillus ferrooxidans from Yunfu sulfide mine in Guangdong province and studies on its growth rule[J]. Geological Journal of China Universities, 2006(1): 93-97. doi: 10.3969/j.issn.1006-7493.2006.01.010
[49] 荆乾坤. 典型锂离子电池正极材料的湿法回收与再生基础研究[D]. 北京: 北京科技大学, 2021.
JING Q K. Basic research on wet chemical recovery and regeneration of typical cathode material of lithium-ion batteries[D]. Beijing: University of Science and Technology Beijing, 2021.
[50] 高瑞, 王继芬. 废旧锂电池中有价金属的湿法回收技术研究进展[J]. 上海第二工业大学学报, 2020, 37(1):1-7. GAO R, WANG J F. Research progress on the wet recovery technology of valuable metals in waste lithium batteries[J]. Journal of Shanghai Polytechnic University, 2020, 37(1):1-7. doi: 10.19570/j.cnki.jsspu.2020.01.001
GAO R, WANG J F. Research progress on the wet recovery technology of valuable metals in waste lithium batteries[J]. Journal of Shanghai Polytechnic University, 2020, 37(1): 1-7. doi: 10.19570/j.cnki.jsspu.2020.01.001
[51] 辛宝平, 李是珅, 赵小鹭, 等. 废旧锂离子电池中钴的生物淋滤机制[J]. 科学通报, 2008(23): 2881-2887.
XING B P, LI S K, ZHAO X L, et al. Bioleaching of metal Co from spent lithium-ion batteries[J], Chinese Science Bulletin, 2008(23): 2881-2887.
[52] 邓孝荣, 曾桂生, 李卓, 等. 氧化亚铁硫杆菌浸出废旧锂离子电池的工艺条件[J]. 环境化学, 2012, 31(9):1381. DENG X R, ZENG G S, LI Z, et al. Optimization conditions of bioleaching spent lithium-ion batteries by thiobacillus ferrooxidans[J]. Environmental Chemistry, 2012, 31(9):1381.
DENG X R, ZENG G S, LI Z, et al. Optimization conditions of bioleaching spent lithium-ion batteries by thiobacillus ferrooxidans[J]. Environmental Chemistry, 2012, 31(9): 1381.
[53] HOREH N B, MOUSAVI S M, SHOJAOSADATI S A. Bioleaching of valuable metals from spent lithium-ion mobile phone batteries using Aspergillus niger[J]. J Power Sour, 2016, 320:257-266. doi: 10.1016/j.jpowsour.2016.04.104
[54] 赖延清, 杨健, 张刚, 等. 废旧三元锂离子电池正极材料的淀粉还原浸出工艺及其动力学[J]. 中国有色金属学报, 2019, 29(1):153-160. LAI Y Q, YANG J, ZHANG G, et al. Optimization and kinetics of leaching valuable metals from cathode materials of spent ternary lithium-ion batteries with starch as reducing agent[J]. The Chinese Journal of Nonferrous Metals, 2019, 29(1):153-160. doi: 10.19476/j.ysxb.1004.0609.2019.01.18
LAI Y Q, YANG J, ZHANG G, et al. Optimization and kinetics of leaching valuable metals from cathode materials of spent ternary lithium-ion batteries with starch as reducing agent[J]. The Chinese Journal of Nonferrous Metals, 2019, 29(1): 153-160. doi: 10.19476/j.ysxb.1004.0609.2019.01.18
[55] 周涛, 徐莉萍, 范百林, 等. 从废旧钴镍锰酸锂电池中回收有价金属的新工艺[J]. 徐州工程学院学报(自然科学版), 2017, 32(1):6-12. ZHOU T, XU L P, FAN B L, et al. Recovering valuable metals from spent lithium-ion batteries witt malic acid[J]. Journal of Xuzhou Institute of Technology(Natural Sciences Edition), 2017, 32(1):6-12. doi: 10.15873/j.cnki.jxit.000131
ZHOU T, XU L P, FAN B L, et al. Recovering valuable metals from spent lithium-ion batteries witt malic acid[J]. Journal of Xuzhou Institute of Technology(Natural Sciences Edition), 2017, 32(1): 6-12 doi: 10.15873/j.cnki.jxit.000131
[56] ZENG G S, DENG X R, LUO S L, et al. A copper-catalyzed bioleaching process for enhancement of cobalt dissolution from spent lithium-ion batteries[J]. Journal of Hazardous Materials, 2011, 199:164-169.
[57] 李林林, 曹林娟, 麦永雄, 等. 废旧锂离子电池有机酸湿法冶金回收技术研究进展[J]. 储能科学与技术, 2020, 9(6):1641-1650. LI L L, CAO L J, MAI Y X, et al. Research progress of the organic acid of the hydrometallurgical recovery technology in spent lithium-ion batteries[J]. Energy Storage Science and Technology, 2020, 9(6):1641-1650. doi: 10.19799/j.cnki.2095-4239.2020.0199
LI L L, CAO L J, MAI Y X, et al. Research progress of the organic acid of the hydrometallurgical recovery technology in spent lithium-ion batteries[J]. Energy Storage Science and Technology, 2020, 9(6): 1641-1650. doi: 10.19799/j.cnki.2095-4239.2020.0199
[58] 张振芳, 陈秀法, 李仰春, 等. “双碳”目标下镍资源的综合利用发展趋势[J]. 矿产综合利用, 2022(2):31-39. ZHANG Z F, CHEN X F, LI Y C, et al. Multipurpose utilization trend of nickel mineral resources under the goal of carbon peaking and carbon neutrality[J]. Multipurpose Utilization of Mineral Resources, 2022(2):31-39. doi: 10.3969/j.issn.1000-6532.2022.02.006
ZHANG Z F, CHEN X F, LI Y C, et al. Multipurpose utilization trend of nickel mineral resources under the goal of carbon peaking and carbon neutrality[J]. Multipurpose Utilization of Mineral Resources, 2022 (2): 31-39. doi: 10.3969/j.issn.1000-6532.2022.02.006
-