-
摘要:
这是一篇矿物加工工程领域的论文。选择吕临能化有限公司选煤厂的5#、9#和木瓜三种煤样为研究对象,对三种煤样进行了粒度组成、工业分析与元素分析;采用XRD、FT-IR与XPS等方法对三种煤样的矿物组成和表面官能团进行了分析。采用煤油、现场药剂与实验室自研的TY6药剂进行了浮选实验,对比了三种药剂对不同类型煤样的捕收效果。结果表明,5#煤样易浮,9#煤样浮选性能略低于5#煤,而木瓜煤样氧化程度高,亲水能力强,难浮。对于三种煤样,TY6和现场药剂都表现出明显优于煤油的捕收性能,且用量更低;对于易浮煤样,TY6选择性更好;对于难浮煤样,TY6捕收能力更强。分散粒径小、粘度大、复配有含氧有机物等是TY6异于煤油的主要特点,也因此能够与煤,特别是氧化煤表面更好地作用,使煤表面接触角增大,疏水性变强,可浮性明显改善,在这些方面,TY6表现比现场药剂略胜一筹。
Abstract:This is an article in the field of mineral processing engineering. Three samples of 5#, 9# and Mugua coal from Coal Preparation Plant of Lyulin Energy & Chemical Co., Ltd. were collected as the research objects. Screening, proximate analysis and ultimate analysis of the three coal samples were carried out. The mineral composition and surface functional groups of the three coal samples were analyzed by XRD, FT-IR and XPS. Kerosene, on-site reagent and TY6 developed in the laboratory were used for flotation tests. The collecting effect of the three reagents on different types of coal samples was compared. The results showed that 5# coal sample was easy to float, 9# coal sample showed less floatability than 5# coal, while Mugua coal showed the poorest floatability owing to high oxidation and strong hydrophilicity. For the three coal samples, TY6 and the on-site reagents both showed much better collective ability than kerosene and consume less as well. For easy-to-float coal, TY6 showed better selectivity, while for difficult-to-float coal, TY6 showed better collectivity. Smaller particle size dispersed in water, higher viscosity, and containing oxygen-bearing organic substances were the main characteristics of TY6 and the on-site reagents that made them stand out as compared with kerosene, which resulted in better reaction with coal surface, bigger contact angle and better hydrophobicity. In this point of view, TY6 behaved even a little better than the on-site reagents.
-
Key words:
- Mineral processing engineering /
- Coal flotation /
- Flotation reagent /
- Oxidized coal /
- TY6
-
-
表 1 煤样筛分实验结果
Table 1. Screening results of coal samples
粒度/mm 5# 9# 木瓜 产率/% 灰分/% 产率/% 灰分/% 产率/% 灰分/% -0.5+0.25 18.05 35.40 29.24 13.73 35.19 19.20 -0.25+0.125 30.19 29.29 20.29 19.67 21.58 20.70 -0.125+0.074 13.95 27.98 10.59 20.09 8.60 20.43 -0.074+0.045 12.17 22.91 11.36 20.19 9.10 23.84 -0.045 25.65 33.57 28.52 29.60 25.54 41.69 合计 100.00 30.53 100.00 20.87 100.00 25.80 表 2 煤样的工业分析和元素分析
Table 2. Proximate and ultimate analysis results of coal samples
煤样 工业分析 元素分析 水分Mad/% 灰分Aad/% 挥发分Vdaf/% 固定碳FCd/% 碳Cd/% 氢Hd/% 氮Nd/% 氧Od/% 硫St,d/% 5# 0.86 14.69 32.05 57.97 71.21 4.21 1.42 7.70 0.78 9# 0.62 10.51 28.38 64.10 76.01 4.25 1.35 6.06 1.82 木瓜 0.68 15.22 21.07 66.92 72.25 3.71 1.16 5.83 1.83 表 3 官能团含量分析
Table 3. Content analysis of functional groups
结合能/eV 碳元素存在形式 含量/% 5# 9# 木瓜 284.8 C-C、C-H 88.56 85.60 85.82 286.2 C-O 11.40 9.09 6.99 287.5 C=O - - 1.67 290.0 COO- - 5.30 5.11 表 4 5#煤样浮选实验结果
Table 4. Flotation test results of 5# coal samples
捕收剂种类
及用量/(g/t)产品
名称产率/% 灰分/% 可燃体
回收率/%浮选
完善度/%煤油 300 精煤 37.05 11.16 45.82 25.18 尾煤 62.95 38.17 现场药剂 300 精煤 79.93 17.13 92.90 45.20 尾煤 20.07 74.77 TY6 300 精煤 74.31 15.25 87.92 47.98 尾煤 25.69 66.33 煤油 100 精煤 27.16 9.70 34.34 19.87 尾煤 72.84 35.63 现场药剂 100 精煤 75.28 14.35 89.92 37.96 尾煤 24.72 70.87 TY6 100 精煤 66.85 12.90 80.93 41.46 尾煤 33.15 58.62 表 5 9#煤样浮选实验结果
Table 5. Flotation results of 9# coal samples
捕收剂 产品
名称产率/% 灰分/% 可燃体
回收率/%浮选
完善度/%煤油 精煤 54.33 7.47 64.19 38.49 尾煤 45.67 38.60 现场药剂 精煤 79.45 10.38 90.77 52.50 尾煤 20.55 64.75 TY6 精煤 79.37 10.07 90.59 52.88 尾煤 20.63 64.03 表 6 木瓜浮选实验结果
Table 6. Flotation results of Mugua coal
药剂 产品
名称产率/% 灰分/% 可燃体
回收率/%浮选
完善度/%煤油 精煤 43.23 8.14 52.85 31.65 尾煤 56.77 37.60 现场药剂 精煤 59.70 10.18 71.40 46.98 尾煤 40.30 46.69 TY6 精煤 65.03 10.55 77.10 49.15 尾煤 34.97 50.59 表 7 混合煤样的浮选实验结果
Table 7. Flotation results of mixed coal samples
药剂 产品
名称产率/% 灰分/% 可燃体
回收率/%浮选
完善度/%煤油 精煤 62.97 9.47 74.88 41.97 尾煤 37.03 48.35 现场药剂 精煤 71.32 11.43 83.50 42.73 尾煤 28.68 56.46 TY6 精煤 72.12 11.43 84.29 43.01 尾煤 27.88 57.32 表 8 捕收剂作用后木瓜煤样的接触角
Table 8. Contact angle of reagents with Mugua coal samples
作用药剂 原样 煤油 现场药剂 TY6 接触角/(°) 53.13 60.87 80.40 75.88 -
[1] 王市委, 陶秀祥, 陈松降, 等. 低阶煤的油泡浮选研究进展[J]. 矿产综合利用, 2020(4):48-58.WANG S W, TAO X X, CHEN S J, et al. Development of oily bubble flotation research for low-rank coal[J]. Multipurpose Utilization of Mineral Resources, 2020(4):48-58. doi: 10.3969/j.issn.1000-6532.2020.04.008
WANG S W, TAO X X, CHEN S J, et al. Development of oily bubble flotation research for low-rank coal[J]. Multipurpose Utilization of Mineral Resources, 2020(4):48-58. doi: 10.3969/j.issn.1000-6532.2020.04.008
[2] 程志红. “双碳目标”下表面改性与新型药剂在低阶煤浮选中的应用[J]. 矿产综合利用, 2022(2):15-21.CHENG Z H. Application of surface modification and new reagents in low-rank coal flotation under "double carbon target"[J]. Multipurpose Utilization of Mineral Resources, 2022(2):15-21. doi: 10.3969/j.issn.1000-6532.2022.02.003
CHENG Z H. Application of surface modification and new reagents in low-rank coal flotation under "double carbon target"[J]. Multipurpose Utilization of Mineral Resources, 2022(2):15-21. doi: 10.3969/j.issn.1000-6532.2022.02.003
[3] 桂夏辉, 邢耀文, 王婷霞. 煤泥浮选过程强化之二——低阶/氧化煤难浮机理探讨篇: 2018年全国选煤学术交流会[C]. 选煤技术, 2017(2): 79-83+91.GUI X H, XING Y W, WANG T X. Coal flotation process intensification: part Ⅱ-Study on mechnasim of difficulty in flotation of low-rank and oxidized coal[C]. 79-83+91.
GUI X H, XING Y W, WANG T X. Coal flotation process intensification: part Ⅱ-Study on mechnasim of difficulty in flotation of low-rank and oxidized coal[C]. 79-83+91.
[4] 武乐鹏, 宋强, 张少飞, 等. 生物质柴油对朔州低阶煤的浮选研究[J]. 矿产综合利用, 2021(2):85-90.WU L P, SONG Q, ZHANG S F, et al. Study on flotation of Shuozhou low-rank coal with bio-diesel[J]. Multipurpose Utilization of Mineral Resources, 2021(2):85-90. doi: 10.3969/j.issn.1000-6532.2021.02.016
WU L P, SONG Q, ZHANG S F, et al. Study on flotation of Shuozhou low-rank coal with bio-diesel[J]. Multipurpose Utilization of Mineral Resources, 2021(2):85-90. doi: 10.3969/j.issn.1000-6532.2021.02.016
[5] 朱一民. 2020 年浮选药剂的进展[J]. 矿产综合利用, 2021(2):102-118.ZHU Y M. Development of flotation reagent in 2020[J]. Multipurpose Utilization of Mineral Resources, 2021(2):102-118. doi: 10.3969/j.issn.1000-6532.2021.02.019
ZHU Y M. Development of flotation reagent in 2020[J]. Multipurpose Utilization of Mineral Resources, 2021(2):102-118. doi: 10.3969/j.issn.1000-6532.2021.02.019
[6] 谭丽, 张君杰, 王建忠, 等. 鄂尔多斯某选煤厂低阶煤泥浮选实验研究[J]. 内蒙古科技大学学报, 2020, 39(4):324-328.TAN L, ZHANG J J, WANG J Z, et al. Experimental study on flotation of low-rank coal slurry from a coal processing plant in Ordos[J]. Journal of Inner Mongolia University of Science and Technology, 2020, 39(4):324-328.
TAN L, ZHANG J J, WANG J Z, et al. Experimental study on flotation of low-rank coal slurry from a coal processing plant in Ordos[J]. Journal of Inner Mongolia University of Science and Technology, 2020, 39(4):324-328.
[7] 赵学敏, 刘生玉, 樊民强, 等. 基于煤油和仲辛醇的微乳液配制及应用[J]. 煤炭科学技术, 2017, 48(4):211-216.ZHAO X M, LIU S Y, FAN M Q, et al. Formulation and application of microemulsion based on kerosene and sec-octanol[J]. Coal Science and Technology, 2017, 48(4):211-216.
ZHAO X M, LIU S Y, FAN M Q, et al. Formulation and application of microemulsion based on kerosene and sec-octanol[J]. Coal Science and Technology, 2017, 48(4):211-216.
[8] 任聪, 樊民强, 李志红, 等. 复配药剂浮选低阶煤泥的效能研究[J]. 煤炭科学技术, 2020, 48(S1):242-247.REN C, FAN M Q, LI Z H, et al. Efficacy study of flotation of low-rank coal slurry with compounding agents[J]. Coal Science and Technology, 2020, 48(S1):242-247.
REN C, FAN M Q, LI Z H, et al. Efficacy study of flotation of low-rank coal slurry with compounding agents[J]. Coal Science and Technology, 2020, 48(S1):242-247.
[9] 刘安. 非极性油辅助十二胺混溶捕收剂提效机理研究[D]. 太原: 太原理工大学, 2015.LIU A. Study on the mechanism of efficiency enhancement of non-polar oil-assisted dodecylamine miscible trap [D]. Taiyuan: Taiyuan University of Technology, 2015.
LIU A. Study on the mechanism of efficiency enhancement of non-polar oil-assisted dodecylamine miscible trap [D]. Taiyuan: Taiyuan University of Technology, 2015.
-