含锌电炉粉尘钙化碳热还原焙烧实验

余水, 邱家用, 居殿春, 朱开琦, 陶雨倩, 毛瑞. 含锌电炉粉尘钙化碳热还原焙烧实验[J]. 矿产综合利用, 2024, 45(3): 135-142, 156. doi: 10.3969/j.issn.1000-6532.2024.03.021
引用本文: 余水, 邱家用, 居殿春, 朱开琦, 陶雨倩, 毛瑞. 含锌电炉粉尘钙化碳热还原焙烧实验[J]. 矿产综合利用, 2024, 45(3): 135-142, 156. doi: 10.3969/j.issn.1000-6532.2024.03.021
YU Shui, QIU Jiayong, JU Dianchun, ZHU Kaiqi, TAO Yuqian, MAO Rui. Experiment on Calcified Carbothermal Reduction Roasting of Zinc Containing Electric Furnace Dust[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(3): 135-142, 156. doi: 10.3969/j.issn.1000-6532.2024.03.021
Citation: YU Shui, QIU Jiayong, JU Dianchun, ZHU Kaiqi, TAO Yuqian, MAO Rui. Experiment on Calcified Carbothermal Reduction Roasting of Zinc Containing Electric Furnace Dust[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(3): 135-142, 156. doi: 10.3969/j.issn.1000-6532.2024.03.021

含锌电炉粉尘钙化碳热还原焙烧实验

  • 基金项目: “十三五”国家重点研发计划基金资助项目(2017YFB0603801);江苏省自然科学基金资助项目(BK20161271);江苏科技大学本科创新创业训练计划项目
详细信息
    作者简介: 余水(1995-),男,硕士,主要研究方向为冶金固体废弃物资源化综合利用研究
    通讯作者: 邱家用(1975-),男,博士,副教授, 主要研究方向为冶金固体废弃物资源化综合利用研究、冶金数值模拟与仿真
  • 中图分类号: TD982;TF82

Experiment on Calcified Carbothermal Reduction Roasting of Zinc Containing Electric Furnace Dust

More Information
  • 这是一篇冶金工程领域的论文。为强化含锌电炉粉尘中锌和铁资源的有效分离与回收,并降低碳还原剂消耗,提出以电炉粉尘制备高碱度炉料进行钙化碳热还原焙烧的思路和方法。采用热力学计算和实验研究相结合,分析电炉粉尘钙化碳热还原焙烧过程中主要物相转变规律,探究其钙化碳热还原反应行为和路径。结果表明,当碳氧摩尔比nc/no<0.6和温度低于1000 ℃时,ZnFe2O4还原生成Fe0.85-xZnxO,抑制锌的还原和挥发。而添加CaO均能将ZnFe2O4和Fe0.85-xZnxO钙化生成Ca2Fe2O5,Ca2Fe2O5会被进一步还原。当温度低于1100 ℃及nc/no<1.0时,含锌电炉粉尘钙化碳热还原焙烧反应路径为:ZnFe2O4 + CaO → Ca2Fe2O5 + ZnO → Ca2Fe2O5+ Zn (g) 和Fe0.85-xZnxO + CaO → Ca2Fe2O5 + ZnO + FeO →Ca2Fe2O5 + Fe + Zn (g)。这两种反应均能促进锌的释放。在nc/no为0.4~1.2,焙烧温度为1000~1100 ℃,CaO能促进锌的挥发,钙化碳热还原焙烧nc/no=1.0时的脱锌率与碳热还原焙烧nc/no=1.2时接近,均在90%左右。因此,钙化碳热还原焙烧可降低碳还原剂消耗,节约能耗。

  • 加载中
  • 图 1  电炉粉尘原料的XRD

    Figure 1. 

    图 2  电炉粉尘原料的SEM

    Figure 2. 

    图 3  粒度分布

    Figure 3. 

    图 4  电炉粉尘钙化碳热还原反应的△Gθ与温度变化的关系

    Figure 4. 

    图 5  不同碳氧摩尔比试样焙烧后的XRD

    Figure 5. 

    图 6  不同焙烧温度下试样焙烧后的XRD

    Figure 6. 

    图 7  碳氧比对脱锌率的影响(T=1000 ℃)

    Figure 7. 

    图 8  焙烧温度对脱锌率的影响(nc/no=0.8)

    Figure 8. 

    表 1  沙钢含锌电炉粉尘化学成分/%

    Table 1.  Chemical composition of zinc-bearing EAFD in Sha-steel

    TFeZnCaOCSiO2MgOMnOK2OSO3
    74.6212.963.112.862.011.181.350.750.63
    下载: 导出CSV

    表 2  电炉粉尘钙化碳热还原焙烧主要化学反应

    Table 2.  Main chemical reaction of calcified carbothermal reduction roasting of EAFD

    化学反应 起始温度/K
    3ZnFe2O4+C= 3ZnO+2Fe3O4+CO(g) 663
    ZnFe2O4+C= ZnO+2FeO+CO(g) 754
    ZnFe2O4+4C= Zn+2Fe+4CO(g) 1020
    ZnFe2O4+2CaO= Ca2Fe2O5+ ZnO 自发进行
    ZnFe2O4+ 2CaO+C= Zn+Ca2Fe2O5+CO(g) 1040
    3Fe2O3+C=2Fe3O4+CO(g) 597
    Fe3O4+C=3FeO+CO(g) 937
    FeO+C=Fe+CO(g) 978
    ZnO+C=Zn(g)+CO(g) 1225
    Ca2Fe2O5+3C= 2CaO+2Fe+3CO(g) 1047
    下载: 导出CSV
  • [1]

    汪鑫, 邓寅祥, 许继芳, 等. 铁酸锌配碳选择性还原的热力学分析和实验研究[J]. 矿产综合利用, 2020(2):167-171+15.WANG X, DENG Y X, XU J F, et al. Thermodynamic analysis and experimental study on selective reduction of zinc ferrite with carbon[J]. Multipurpose Utilization of Mineral Resources, 2020(2):167-171+15. doi: 10.3969/j.issn.1000-6532.2020.02.030

    WANG X, DENG Y X, XU J F, et al. Thermodynamic analysis and experimental study on selective reduction of zinc ferrite with carbon[J]. Multipurpose Utilization of Mineral Resources, 2020(2):167-171+15. doi: 10.3969/j.issn.1000-6532.2020.02.030

    [2]

    李洋, 张建良, 袁骧, 等. 电炉粉尘锌元素回收利用基础分析[J]. 中国冶金, 2018, 28(11):16-24.LI Y, ZHANG J L, YUAN X, et al. Basic analysis of zinc recovery from electric furnace dust[J]. Metallurgy of China, 2018, 28(11):16-24.

    LI Y, ZHANG J L, YUAN X, et al. Basic analysis of zinc recovery from electric furnace dust[J]. Metallurgy of China, 2018, 28(11):16-24.

    [3]

    赵林飞, 李慧, 许莹, 等. 铁酸锌制备工艺的研究进展[J]. 矿产综合利用, 2020(3):14-21.ZHAO L F, LI H, XU Y, et al. Research progress on preparation technology of zinc ferrite[J]. Multipurpose Utilization of Mineral Resources, 2020(3):14-21. doi: 10.3969/j.issn.1000-6532.2020.03.003

    ZHAO L F, LI H, XU Y, et al. Research progress on preparation technology of zinc ferrite[J]. Multipurpose Utilization of Mineral Resources, 2020(3):14-21. doi: 10.3969/j.issn.1000-6532.2020.03.003

    [4]

    Pedro Jorge W K de B, N C H, A C F V. EAF dust: an overview on the influences of physical, chemical and mineral features in its recycling and waste incorporation routes[J]. Journal of Materials Research and Technology, 2017, 6(2):194-202. doi: 10.1016/j.jmrt.2016.10.002

    [5]

    信晓飞, 张晋霞, 冯洪均. 响应曲面法优化含锌尘泥选择性浸出工艺[J]. 矿产综合利用, 2021(2):146-151.XIN X F, ZHANG J X, FENG H J. Optimization of selective leaching technology from zinc-bearing dust using response surface methodology[J]. Multipurpose Utilization of Mineral Resources, 2021(2):146-151. doi: 10.3969/j.issn.1000-6532.2021.02.025

    XIN X F, ZHANG J X, FENG H J. Optimization of selective leaching technology from zinc-bearing dust using response surface methodology[J]. Multipurpose Utilization of Mineral Resources, 2021(2):146-151. doi: 10.3969/j.issn.1000-6532.2021.02.025

    [6]

    Han S L, Da S M P, Yuhoon, et al. Toward high recovery and selective leaching of zinc from electric arc furnace dust with different physicochemical properties[J]. Environmental Engineering Research, 2020, 25(3):335-344.

    [7]

    殷磊明. 煅烧含锌粉尘回转窑结圈的研究[D]. 马鞍山: 安徽工业大学, 2017.YIN L M. Research on ring formation of calcining zinc containing dust rotary kiln [D]. Maanshan: Anhui University of technology, 2017

    YIN L M. Research on ring formation of calcining zinc containing dust rotary kiln [D]. Maanshan: Anhui University of technology, 2017

    [8]

    Zhang H N, Li J L, Xu A J, et al. Carbothermicreduction of zinc and iron oxides in electric arc furnace dust[J]. Journal of Iron and Steel Research International, 2014, 21(4):427-432. doi: 10.1016/S1006-706X(14)60066-2

    [9]

    Itoh S, Tsubone A, Yokoyama M K, et al. New EAF dust treatment process with the aid of strong magnetic field[J]. ISIJ International, 2008, 48(10):1339-1344. doi: 10.2355/isijinternational.48.1339

    [10]

    Lv W, Gan M, Fan X H, et al. Mechanism of calcium oxide promoting the separation of zinc and iron in metallurgical dust under reducing atmosphere[J]. Journal of Materials Research and Technology, 2019, 8(6):5745-5752. doi: 10.1016/j.jmrt.2019.09.043

    [11]

    闫缓. 基于铁酸锌选择性还原的锌浸出渣处理研究 [D]. 长沙: 中南大学, 2014.YAN H. Treatment of zinc leaching residue based on selective reduction of zinc ferrite [D]. Changsha: Central South University, 2014.

    YAN H. Treatment of zinc leaching residue based on selective reduction of zinc ferrite [D]. Changsha: Central South University, 2014.

  • 加载中

(8)

(2)

计量
  • 文章访问数:  544
  • PDF下载数:  207
  • 施引文献:  0
出版历程
收稿日期:  2022-07-18
刊出日期:  2024-06-25

目录