Experiment on Calcified Carbothermal Reduction Roasting of Zinc Containing Electric Furnace Dust
-
摘要:
这是一篇冶金工程领域的论文。为强化含锌电炉粉尘中锌和铁资源的有效分离与回收,并降低碳还原剂消耗,提出以电炉粉尘制备高碱度炉料进行钙化碳热还原焙烧的思路和方法。采用热力学计算和实验研究相结合,分析电炉粉尘钙化碳热还原焙烧过程中主要物相转变规律,探究其钙化碳热还原反应行为和路径。结果表明,当碳氧摩尔比nc/no<0.6和温度低于1000 ℃时,ZnFe2O4还原生成Fe0.85-xZnxO,抑制锌的还原和挥发。而添加CaO均能将ZnFe2O4和Fe0.85-xZnxO钙化生成Ca2Fe2O5,Ca2Fe2O5会被进一步还原。当温度低于1100 ℃及nc/no<1.0时,含锌电炉粉尘钙化碳热还原焙烧反应路径为:ZnFe2O4 + CaO → Ca2Fe2O5 + ZnO → Ca2Fe2O5+ Zn (g) 和Fe0.85-xZnxO + CaO → Ca2Fe2O5 + ZnO + FeO →Ca2Fe2O5 + Fe + Zn (g)。这两种反应均能促进锌的释放。在nc/no为0.4~1.2,焙烧温度为1000~1100 ℃,CaO能促进锌的挥发,钙化碳热还原焙烧nc/no=1.0时的脱锌率与碳热还原焙烧nc/no=1.2时接近,均在90%左右。因此,钙化碳热还原焙烧可降低碳还原剂消耗,节约能耗。
Abstract:This is an article in the field of metallurgical engineering. In order to strengthen the effective separation and recovery of zinc and iron resources in zinc containing electric arc furnace dust(EAFD), and reduce the consumption of carbon reducing agent, the idea and method of calcified carbothermal reduction roasting with high basicity burden prepared from EAFD was proposed. Thermodynamic calculation and test study were combined, the main phase transformation during the calcified carbothermal reduction roasting process of EAFD was analyzed to explore calcified carbothermal reduction reaction behavior and path. It is shown that the reduction of ZnFe2O4 to Fe0.85-xZnxO inhibits the reduction and volatilization of zinc when the molar ratio of carbon to oxygen is less than 0.6 and the temperature is lower than 1000 ℃. While the calcification of ZnFe2O4 and Fe0.85-xZnxO to Ca2Fe2O5 by adding CaO can promote the reduction of zinc and Ca2Fe2O5 will be further reduced. When the temperature is lower than 1100 ℃ and nc/no< 1.0, the reaction path of calcified carbothermal reduction roasting is ZnFe2O4 + CaO → Ca2Fe2O5 + ZnO → Ca2Fe2O5 + Zn (g) and Fe0.85-xZnxO + CaO → Ca2Fe2O5 + ZnO + FeO → Ca2Fe2O5 + Fe + Zn (g). Both of these reactions can promote the release of zinc. The results show that CaO can promote zinc volatilization in the range of nc/no 0.4~1.2 and calcination temperature 1000~1100 ℃. The dezincification rate of calcified carbon thermal reduction roasting at nc/no = 1.0 is close to that at nc/no = 1.2, both of which are about 90%, so the consumption of carbon reducing agent can be reduced and energy consumption can be saved.
-
-
表 1 沙钢含锌电炉粉尘化学成分/%
Table 1. Chemical composition of zinc-bearing EAFD in Sha-steel
TFe Zn CaO C SiO2 MgO MnO K2O SO3 74.62 12.96 3.11 2.86 2.01 1.18 1.35 0.75 0.63 表 2 电炉粉尘钙化碳热还原焙烧主要化学反应
Table 2. Main chemical reaction of calcified carbothermal reduction roasting of EAFD
化学反应 起始温度/K 3ZnFe2O4+C= 3ZnO+2Fe3O4+CO(g) 663 ZnFe2O4+C= ZnO+2FeO+CO(g) 754 ZnFe2O4+4C= Zn+2Fe+4CO(g) 1020 ZnFe2O4+2CaO= Ca2Fe2O5+ ZnO 自发进行 ZnFe2O4+ 2CaO+C= Zn+Ca2Fe2O5+CO(g) 1040 3Fe2O3+C=2Fe3O4+CO(g) 597 Fe3O4+C=3FeO+CO(g) 937 FeO+C=Fe+CO(g) 978 ZnO+C=Zn(g)+CO(g) 1225 Ca2Fe2O5+3C= 2CaO+2Fe+3CO(g) 1047 -
[1] 汪鑫, 邓寅祥, 许继芳, 等. 铁酸锌配碳选择性还原的热力学分析和实验研究[J]. 矿产综合利用, 2020(2):167-171+15.WANG X, DENG Y X, XU J F, et al. Thermodynamic analysis and experimental study on selective reduction of zinc ferrite with carbon[J]. Multipurpose Utilization of Mineral Resources, 2020(2):167-171+15. doi: 10.3969/j.issn.1000-6532.2020.02.030
WANG X, DENG Y X, XU J F, et al. Thermodynamic analysis and experimental study on selective reduction of zinc ferrite with carbon[J]. Multipurpose Utilization of Mineral Resources, 2020(2):167-171+15. doi: 10.3969/j.issn.1000-6532.2020.02.030
[2] 李洋, 张建良, 袁骧, 等. 电炉粉尘锌元素回收利用基础分析[J]. 中国冶金, 2018, 28(11):16-24.LI Y, ZHANG J L, YUAN X, et al. Basic analysis of zinc recovery from electric furnace dust[J]. Metallurgy of China, 2018, 28(11):16-24.
LI Y, ZHANG J L, YUAN X, et al. Basic analysis of zinc recovery from electric furnace dust[J]. Metallurgy of China, 2018, 28(11):16-24.
[3] 赵林飞, 李慧, 许莹, 等. 铁酸锌制备工艺的研究进展[J]. 矿产综合利用, 2020(3):14-21.ZHAO L F, LI H, XU Y, et al. Research progress on preparation technology of zinc ferrite[J]. Multipurpose Utilization of Mineral Resources, 2020(3):14-21. doi: 10.3969/j.issn.1000-6532.2020.03.003
ZHAO L F, LI H, XU Y, et al. Research progress on preparation technology of zinc ferrite[J]. Multipurpose Utilization of Mineral Resources, 2020(3):14-21. doi: 10.3969/j.issn.1000-6532.2020.03.003
[4] Pedro Jorge W K de B, N C H, A C F V. EAF dust: an overview on the influences of physical, chemical and mineral features in its recycling and waste incorporation routes[J]. Journal of Materials Research and Technology, 2017, 6(2):194-202. doi: 10.1016/j.jmrt.2016.10.002
[5] 信晓飞, 张晋霞, 冯洪均. 响应曲面法优化含锌尘泥选择性浸出工艺[J]. 矿产综合利用, 2021(2):146-151.XIN X F, ZHANG J X, FENG H J. Optimization of selective leaching technology from zinc-bearing dust using response surface methodology[J]. Multipurpose Utilization of Mineral Resources, 2021(2):146-151. doi: 10.3969/j.issn.1000-6532.2021.02.025
XIN X F, ZHANG J X, FENG H J. Optimization of selective leaching technology from zinc-bearing dust using response surface methodology[J]. Multipurpose Utilization of Mineral Resources, 2021(2):146-151. doi: 10.3969/j.issn.1000-6532.2021.02.025
[6] Han S L, Da S M P, Yuhoon, et al. Toward high recovery and selective leaching of zinc from electric arc furnace dust with different physicochemical properties[J]. Environmental Engineering Research, 2020, 25(3):335-344.
[7] 殷磊明. 煅烧含锌粉尘回转窑结圈的研究[D]. 马鞍山: 安徽工业大学, 2017.YIN L M. Research on ring formation of calcining zinc containing dust rotary kiln [D]. Maanshan: Anhui University of technology, 2017
YIN L M. Research on ring formation of calcining zinc containing dust rotary kiln [D]. Maanshan: Anhui University of technology, 2017
[8] Zhang H N, Li J L, Xu A J, et al. Carbothermicreduction of zinc and iron oxides in electric arc furnace dust[J]. Journal of Iron and Steel Research International, 2014, 21(4):427-432. doi: 10.1016/S1006-706X(14)60066-2
[9] Itoh S, Tsubone A, Yokoyama M K, et al. New EAF dust treatment process with the aid of strong magnetic field[J]. ISIJ International, 2008, 48(10):1339-1344. doi: 10.2355/isijinternational.48.1339
[10] Lv W, Gan M, Fan X H, et al. Mechanism of calcium oxide promoting the separation of zinc and iron in metallurgical dust under reducing atmosphere[J]. Journal of Materials Research and Technology, 2019, 8(6):5745-5752. doi: 10.1016/j.jmrt.2019.09.043
[11] 闫缓. 基于铁酸锌选择性还原的锌浸出渣处理研究 [D]. 长沙: 中南大学, 2014.YAN H. Treatment of zinc leaching residue based on selective reduction of zinc ferrite [D]. Changsha: Central South University, 2014.
YAN H. Treatment of zinc leaching residue based on selective reduction of zinc ferrite [D]. Changsha: Central South University, 2014.
-