Research on Process Mineralogy of a Refractory Lead-zinc Ore in Chengde, Hebei and Analysis of Factors Affecting Flotation
-
摘要:
本研究通过荧光光谱分析和化学多元素分析,通过对河北某难选铅锌矿开展工艺矿物学研究,查明了矿石的矿物组成、主要矿物嵌布特征等信息。研究结果表明,样品中铅含量为1.07%,铅矿物主要赋存在方铅矿中,占比为85.85%。锌含量为2.08%,锌矿物主要赋存在闪锌矿中,占比为66.06%,氧化锌矿占22.43%;方铅矿主要与闪锌矿、黄铁矿共生,呈港湾状、锯齿状、蚕食状等,局部交代强烈。闪锌矿以不规则他形晶粒状结构为主,少量呈脉状结构嵌布,呈浸染状分布。通过分析,原矿铅矿物嵌布粒度偏细且与闪锌矿物连生关系复杂,使铅精矿含锌较高,锌氧化率高使尾矿锌含量偏高,锌回收率较低。
Abstract:Based on fluorescence spectrum analysis and chemical multi-element analysis, through the process mineralogy study of a refractory lead-zinc mine in Hebei, the mineral composition, structure, main mineral embedding characteristics of the ore and the occurrence state of lead-zinc were found out. The results show that the lead content in the ore is 1.07%, and the lead minerals mainly exist in galena, accounting for 85.85%. The content of zinc is 2.08%. Zinc minerals mainly exist in sphalerite, accounting for 66.06%, and zinc oxide ore accounts for 22.43%, Galena is mainly embedded in contact with sphalerite and pyrite and metasomatized sphalerite and pyrite. The contact boundary is uneven, in harbor shape, sawtooth shape, nibbling shape, etc., with strong local metasomatism. Sphalerite is mainly in irregular heteromorphic grain structure, and a small amount is embedded in vein structure, which is distributed in disseminated shape in the ore. Through analysis, the embedded particle size of lead minerals in the raw ore is too fine and the continuous relationship with zinc flash minerals is complex, resulting in high zinc content in lead concentrate, high zinc oxidation rate, high zinc content in tailings and low zinc recovery rate.
-
Key words:
- Lead zinc ore /
- Research on process mineralogy /
- Galena /
- Sphalerite /
- Mineral processing
-
-
表 1 原矿荧光光谱分析结果/%
Table 1. Fluorescence spectrum analysis results of the raw ore
O Na Mg Al Si P S 46.3 0.976 0.628 9.081 26.54 0.05 2.20 Cd K Ca Ti Nb Mn Fe 0.011 4.956 1.38 0.23 0.002 1.25 2.359 Cu Zn Rb Zr Ba Pb 0.088 4 2.24 0.033 9 0.024 0.08 1.149 表 2 原矿主要矿物组成及其相对含量
Table 2. Main mineral composition and relative content of the raw ore
金属矿物 含量/% 非金属矿物 含量/% 黄铁矿 5.04 毒砂 0.18 闪锌矿 2.08 石英 44.80 菱锌矿 0.97 绢(白)云母 18.80 方铅矿 1.06 粘土矿物 16.70 铅矾 0.12 白云石 2.20 黄铜矿 0.20 长石 2.00 赤铁矿 1.20 方解石 0.60 褐铁矿 0.81 其他 2.00 软锰矿 1.24 表 3 黄铁矿嵌布粒度统计
Table 3. Statistics of the embedded particle size of pyrite
粒级范围/mm 分布率/% 累计/% +1.0 16.10 16.10 -1.0+0.5 12.90 29.00 -0.5+0.294 23.50 52.50 -0.294+0.152 20.30 72.80 -0.152+0.074 16.70 89.50 -0.074+0.037 7.40 96.90 -0.037+0.019 2.60 99.50 -0.019 0.50 100.00 注:统计方法为随机线测 表 4 闪锌矿嵌布粒度统计
Table 4. Statistics of the embedded particle size of sphalerite
粒级范围 /mm 分布率/% 累 计/% +1.0 9.90 9.90 -1.0+0.5 7.30 17.20 -0.5+0.294 21.90 39.10 -0.294+0.152 15.50 54.60 -0.152+0.074 23.00 77.60 -0.074+0.037 13.40 91.00 -0.037+0.019 6.80 97.80 -0.019 2.20 100.00 注:统计方法为随机线测 表 5 方铅矿嵌布粒度统计
Table 5. Statistics of the embedded particle size of galena
粒级/mm 分布率/% 累计/% +0.5 5.10 5.10 -0.5+0.294 11.60 16.70 -0.294+0.152 18.50 35.20 -0.152+0.074 26.90 62.10 -0.074+0.037 20.40 82.50 -0.037+0.019 14.10 96.60 -0.019 3.40 100.00 注:统计方法为随机线测 表 6 原矿铅化学物相分析结果/%
Table 6. Results of chemical phase analysis of the lead raw ore
铅相态 Pb含量/% Pb分布/% 锌相态 Zn含量/% Zn分布/% 硫酸铅 0.08 7.55 硫酸锌 迹痕 — 氧化铅 0.04 3.77 氧化锌 0.55 24.23 硫化铅 0.91 85.85 硫化锌 1.52 66.96 铅铁矾等 0.03 2.83 锌铁尖
晶石等0.20 8.81 总铅 1.06 100.00 总锌 2.27 100.00 注:试样研磨至-0.074 mm 100%下分析 -
[1] 赵玉卿, 应用朋, 熊艳, 等. BPMA在某低品位铌钽矿工艺矿物学研究中的应用[J]. 矿产综合利用, 2021(5):129-134.ZHAO Y Q, YING Y P, XIONG Y, et al. Application of BPMA in process mineralogy of a low-grade Nb-Ta Ore[J]. Multipurpose Utilization of Mineral Resources, 2021(5):129-134. doi: 10.3969/j.issn.1000-6532.2021.05.020
ZHAO Y Q, YING Y P, XIONG Y, et al. Application of BPMA in process mineralogy of a low-grade Nb-Ta Ore[J]. Multipurpose Utilization of Mineral Resources, 2021(5):129-134. doi: 10.3969/j.issn.1000-6532.2021.05.020
[2] 胡永兴, 宿虎, 张红斌, 等. 工艺矿物学研究在甘肃某铷矿应用[J]. 矿产综合利用, 2021(5):135-138.HU Y X, SU H, ZHANG H B, et al. Application of process minerals research in a rubidium mine in Gansu Province[J]. Multipurpose Utilization of Mineral Resources, 2021(5):135-138. doi: 10.3969/j.issn.1000-6532.2021.05.021
HU Y X, SU H, ZHANG H B, et al. Application of process minerals research in a rubidium mine in Gansu Province[J]. Multipurpose Utilization of Mineral Resources, 2021(5):135-138. doi: 10.3969/j.issn.1000-6532.2021.05.021
[3] 罗先平, 何坤忠, 周贺鹏, 等. 青海夏乌日塔铜铅锌多金属矿工艺矿物学特征及浮选原则工艺的确定[J]. 金属矿山, 2022(4):122-129.LUO X P, HE K Z, ZHOU H P, et al. Process mineralogical characteristics and determination of flotation principle process of Xiawurita copper-lead-zinc mutil-metal ore in Qinghai[J]. Metal mine, 2022(4):122-129.
LUO X P, HE K Z, ZHOU H P, et al. Process mineralogical characteristics and determination of flotation principle process of Xiawurita copper-lead-zinc mutil-metal ore in Qinghai[J]. Metal mine, 2022(4):122-129.
[4] 杨德明, 李飞, 邢晴晴, 等. 青海省五龙沟金矿原矿工艺矿物学研究[J]. 矿冶, 2021(4):140-146.YANG D M, LI F, XING Q Q, et al. Mineralogy research on gold mine in Wulonggou, Qinghai Province[J]. Mining and metallurgy, 2021(4):140-146. doi: 10.3969/j.issn.1005-7854.2021.04.022
YANG D M, LI F, XING Q Q, et al. Mineralogy research on gold mine in Wulonggou, Qinghai Province[J]. Mining and metallurgy, 2021(4):140-146. doi: 10.3969/j.issn.1005-7854.2021.04.022
[5] 陈艳波, 李光胜, 朱幸福. 低毒环保药剂药效考察试验技术优化[J]. 山东化工, 2021, 50(18):143-144.CHEN Y B, LI G S, ZHU X F. Optimization of test technology for tfficacy in testigation of low loxic lnvironmental lrotection lgents[J]. Shandong Chemical Industry, 2021, 50(18):143-144. doi: 10.3969/j.issn.1008-021X.2021.18.051
CHEN Y B, LI G S, ZHU X F. Optimization of test technology for tfficacy in testigation of low loxic lnvironmental lrotection lgents[J]. Shandong Chemical Industry, 2021, 50(18):143-144. doi: 10.3969/j.issn.1008-021X.2021.18.051
[6] 朱一民. 2020 年浮选药剂的进展[J]. 矿产综合利用, 2021(2):102-118.ZHU Y M. Development of flotation reagent in 2020[J]. Multipurpose Utilization of Mineral Resources, 2021(2):102-118. doi: 10.3969/j.issn.1000-6532.2021.02.019
ZHU Y M. Development of flotation reagent in 2020[J]. Multipurpose Utilization of Mineral Resources, 2021(2):102-118. doi: 10.3969/j.issn.1000-6532.2021.02.019
[7] 龙会友. 铅锌矿的选矿技术研究及工业应用的相关探讨[J]. 世界有色金属, 2018(19):63-65.LONG H Y. Research on beneficiation technology and industrial application of lead-zinc ore[J]. World Nonferrous Metals, 2018(19):63-65 doi: 10.3969/j.issn.1002-5065.2018.19.038
LONG H Y. Research on beneficiation technology and industrial application of lead-zinc ore[J]. World Nonferrous Metals, 2018(19):63-65 doi: 10.3969/j.issn.1002-5065.2018.19.038
[8] 王伟之, 李学军, 陈丽平. 辽宁某铜铅锌多金属硫化矿工艺矿物学研[J]. 金属矿山, 2014(2):83-86.WANG W Z, LI X J, CHEN L P. Study on process mineralogy of a copper lead zinc polymetallic sulfide ore in Liaoning[J]. Metal Mines, 2014(2):83-86.
WANG W Z, LI X J, CHEN L P. Study on process mineralogy of a copper lead zinc polymetallic sulfide ore in Liaoning[J]. Metal Mines, 2014(2):83-86.
[9] 孙若凡, 刘丹, 杜钰, 等. 黄铜矿、方铅矿分离研究现状及进展[J]. 矿产综合利用, 2021(4):80-86.SUN R F, LIU D, DU Y, et al. Research status and development of separation of chalcopyrite and galena[J]. Multipurpose Utilization of Mineral Resources, 2021(4):80-86. doi: 10.3969/j.issn.1000-6532.2021.04.012
SUN R F, LIU D, DU Y, et al. Research status and development of separation of chalcopyrite and galena[J]. Multipurpose Utilization of Mineral Resources, 2021(4):80-86. doi: 10.3969/j.issn.1000-6532.2021.04.012
[10] 黄晟, 吕兵超, 廖银英, 等. 某含金多金属矿尼尔森重选实验研究[J]. 矿产综合利用, 2019(2):51-56.HUANG S, LYU B C, LIAO Y Y, et al. Study on nelson gravity separation of a polymetallic ore bearing gold[J]. Multipurpose Utilization of Mineral Resources, 2019(2):51-56. doi: 10.3969/j.issn.1000-6532.2019.02.010
HUANG S, LYU B C, LIAO Y Y, et al. Study on nelson gravity separation of a polymetallic ore bearing gold[J]. Multipurpose Utilization of Mineral Resources, 2019(2):51-56. doi: 10.3969/j.issn.1000-6532.2019.02.010
-