铝热还原含钛高炉渣制取钛硅铝合金

丁满堂. 铝热还原含钛高炉渣制取钛硅铝合金[J]. 矿产综合利用, 2024, 45(6): 54-58, 66. doi: 10.3969/j.issn.1000-6532.2024.06.009
引用本文: 丁满堂. 铝热还原含钛高炉渣制取钛硅铝合金[J]. 矿产综合利用, 2024, 45(6): 54-58, 66. doi: 10.3969/j.issn.1000-6532.2024.06.009
DING Mantang. Titanium-containing Blast Furnace Slag Produced Titanium-silicon-aluminum Alloy by Aluminothermic Reduction[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(6): 54-58, 66. doi: 10.3969/j.issn.1000-6532.2024.06.009
Citation: DING Mantang. Titanium-containing Blast Furnace Slag Produced Titanium-silicon-aluminum Alloy by Aluminothermic Reduction[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(6): 54-58, 66. doi: 10.3969/j.issn.1000-6532.2024.06.009

铝热还原含钛高炉渣制取钛硅铝合金

详细信息
    作者简介: 丁满堂(1971-),男,副教授,主要从事钒钛磁铁矿冶金与教学
  • 中图分类号: TD989;TF805.1

Titanium-containing Blast Furnace Slag Produced Titanium-silicon-aluminum Alloy by Aluminothermic Reduction

  • 这是一篇冶金工程领域的文章。在氩气保护下,用铝还原含钛高炉渣制得钛硅铝合金。实验结果显示:在1 500 ℃,氩气保护下,铝粉占高炉渣的30%~40%、石灰占5%~15%、萤石≥5%时,还原得到的合金主要为钛硅相、铝硅相、钛相;合金中钛、硅、铝的含量为分别35%~40%、26%~33%、23%~32%,钛、硅、铝的回收率分别为73%~88%、84%~95%、67%~77%。

  • 加载中
  • 图 1  含钛高炉渣铝热反应生成Ti、Si的T-△GΘ

    Figure 1. 

    图 2  含钛高炉渣铝热反应生成SiO的T-△GΘ

    Figure 2. 

    图 3  铝用量对合金中成分影响

    Figure 3. 

    图 4  铝用量对钛、硅回收率、铝利用率影响

    Figure 4. 

    图 5  石灰用量对合金质量影响

    Figure 5. 

    图 6  石灰对钛、硅回收率、铝利用率影响

    Figure 6. 

    图 7  萤石对合金质量影响

    Figure 7. 

    图 8  萤石对钛、硅回收率、铝利用率影响

    Figure 8. 

    图 9  温度对合金质量的影响

    Figure 9. 

    图 10  合金组织SEM

    Figure 10. 

    表 1  攀枝花高钛型高炉渣成分/%

    Table 1.  Composition of Panzhihua high titanium blast furnace slags

    TiO2 CaO MgO SiO2 Al2O3 TFe MFe V2O5 MnO2
    20~24 20~30 8.0~8.9 17~19 14~16 3.0~4.2 1~3 0.2~0.25 0.3~0.5
    下载: 导出CSV
  • [1]

    赵青娥, 张继东, 杨仰军, 等. 快速还原熔炼含钛炉渣的方法[P]. 中国专利201510711318.5ZHAO Q E, ZHANG J D, YANG Y J, et al. Method for rapid reduction and smelting of titanium-containing slag[P]. China Patent, 201510711318.5

    ZHAO Q E, ZHANG J D, YANG Y J, et al. Method for rapid reduction and smelting of titanium-containing slag[P]. China Patent, 201510711318.5

    [2]

    王勋, 韩跃新, 李艳军, 等. 钒钛磁铁矿综合利用研究现状[J]. 金属矿山, 2019(6):33-37.WANG X, HAN Y X, LI Y J, et al. Research status on comprehensive development and utilization of vanadium-titanium magnetite[J]. Metal Mine, 2019(6):33-37.

    WANG X, HAN Y X, LI Y J, et al. Research status on comprehensive development and utilization of vanadium-titanium magnetite[J]. Metal Mine, 2019(6):33-37.

    [3]

    SUI L, ZHAI Y. Reaction kinetics of roasting high-titanium slag with concentrated sulfuric acid[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(3):848-853. doi: 10.1016/S1003-6326(14)63134-4

    [4]

    高洋 . 高钛高炉渣综合利用现状及展望[J]. 矿产综合利用, 2019(1):6-10.GAO Y. Present situation and prospect of comprehensive utilization of high titanium blast furnace slag[J]. Multipurpose Utilization of Mineral Resources, 2019(1):6-10.

    GAO Y. Present situation and prospect of comprehensive utilization of high titanium blast furnace slag[J]. Multipurpose Utilization of Mineral Resources, 2019(1):6-10.

    [5]

    龙雨, 张新建, 李书兰, 等. 含钛高炉渣高温碳化制备TiC影响因素研究[J]. 重庆理工大学学报, 2017, 31(8):93-97LONG Y, ZHANG X J, LI S L, et al. Study on influence factors of high temperature carbonization of Ti-bearing blast furnace slag for preparation of TiC[J]. Journal of Chongqing University of Technology( Natural Science), 2017, 31(8):93-97

    LONG Y, ZHANG X J, LI S L, et al. Study on influence factors of high temperature carbonization of Ti-bearing blast furnace slag for preparation of TiC[J]. Journal of Chongqing University of Technology( Natural Science), 2017, 31(8):93-97

    [6]

    张利凡, 丁满堂, 何翠萍, 等. 含钛高炉渣火法提钛研究[J]. 中国资源综合利用, 2020, 38(10):94-96ZHANG L F, DING M T, HE C P, et al. Extracting titanium from titanium-containing blast furnace slag by pyrometallurgy[J]. China Resources Comprehensive Utilization, 2020, 38(10):94-96 doi: 10.3969/j.issn.1008-9500.2020.10.026

    ZHANG L F, DING M T, HE C P, et al. Extracting titanium from titanium-containing blast furnace slag by pyrometallurgy[J]. China Resources Comprehensive Utilization, 2020, 38(10):94-96 doi: 10.3969/j.issn.1008-9500.2020.10.026

    [7]

    丁满堂. 含钛高炉渣真空减压碳化还原提钛研究[J]. 中国资源综合利用, 2020, 38(1):39-41.DING M T. Study on vacuum carbonization reduction of extraction titanium from titanium-bearing blast furnace[J]. China Resources Comprehensive Utilization, 2020, 38(1):39-41.

    DING M T. Study on vacuum carbonization reduction of extraction titanium from titanium-bearing blast furnace[J]. China Resources Comprehensive Utilization, 2020, 38(1):39-41.

    [8]

    郝百川, 李子越, 贾东方, 等. 含钛高炉渣的综合利用[J]. 矿产综合利用, 2020(6):1-6.HAO B C, LI Z Y, JIA D F, et al. Comprehensive utilization of blast furnace slag containing titanium[J]. Multipurpose Utilization of Mineral Resources, 2020(6):1-6. doi: 10.3969/j.issn.1000-6532.2020.06.001

    HAO B C, LI Z Y, JIA D F, et al. Comprehensive utilization of blast furnace slag containing titanium[J]. Multipurpose Utilization of Mineral Resources, 2020(6):1-6. doi: 10.3969/j.issn.1000-6532.2020.06.001

    [9]

    许莹, 李单单, 杨姗姗, 等. 含钛高炉渣综合利用研究进展[J]. 矿产综合利用, 2021(1):23-28.XU Y, LI D D, YANG S S, et al. Research progress of comprehensive utilization of Ti-bearing blast furnace slag[J]. Multipurpose Utilization of Mineral Resources, 2021(1):23-28. doi: 10.3969/j.issn.1000-6532.2021.01.004

    XU Y, LI D D, YANG S S, et al. Research progress of comprehensive utilization of Ti-bearing blast furnace slag[J]. Multipurpose Utilization of Mineral Resources, 2021(1):23-28. doi: 10.3969/j.issn.1000-6532.2021.01.004

  • 加载中

(10)

(1)

计量
  • 文章访问数:  610
  • PDF下载数:  31
  • 施引文献:  0
出版历程
收稿日期:  2022-04-17
刊出日期:  2024-12-25

目录