Genesis of Geothermal Water in the Overnight Area of the Central Ganzi-Litang County Fault: A Geochemistry Approach
-
摘要:
本研究基于通宵地区2组和周边3组地热水的水化学数据,利用水化学、同位素、地热温标等方法探究了地热水的成因机制。结果显示:通宵地区地热水主要以地幔热与断层摩擦生热为主要热源,补给来源主要为西侧高程4 627 ~ 4 848.83 m处的大气降水和冰雪融水,水化学类型主要为HCO3-Na型,主要水化学过程为硅酸盐矿物的溶解和阳离子交换作用,与其周边热水的水化学性质较为一致。通宵地区地热水地处甘孜—理塘断裂西侧,岩性主要为三叠系二长花岗岩与图姆沟组砂岩、砂板岩,大气降水与地表冰雪融水由西侧二长花岗岩裂隙下渗,向下、向东运移,在地下约3 596 ~ 5 508 m处与来自地幔的热源相遇,形成185.7~281.3 ℃的深部热储,沿级断裂和张性、脆性等构造破碎带向上传递,在地下约1 270 ~ 1 758 m与浅地表冷水混合后形成温度约为69.4~93.8 ℃的浅部热储,混合比例约77.81%~92.53%。本次研究成果可为通宵地区地热资源的开发利用提供有力支撑。
Abstract:Based on the hydrochemical data of 2 groups of geothermal water and 3 groups of geothermal water around the area overnight, the genetic mechanism of geothermal water was studied by using hydrochemical, isotopic and geothermal temperature scale methods. The results show that the main source of geothermal water is mantle heat and fault friction heat, and the main source of geothermal water is precipitation and snowmelt water at the elevation of 4 627~4 848.83 m on the west side, the main hydrochemical type is HCO3-Na, and the main hydrochemical process is the dissolution and cation exchange of silicate minerals, which is consistent with the chemical property of the surrounding hot water. The geothermal water is located on the west side of the Ganzi-litang County Fault. The lithology of the geothermal water is mainly Triassic monzogranite and the sandstone and sandstone slate of the Tumugou Formation, it migrates downward and eastward and meets with the heat source from the mantle at about 3 596~5 508 m underground, forming a deep heat reservoir of 185.7~281.3 ℃, a shallow heat reservoir with a temperature of 69.4~93.8 ℃ is formed by mixing cold water from the surface of the Earth with a temperature of about 1 270~1 758 m, and the mixing ratio is about 77.81%~92.53% . The research results can provide strong support for the development and utilization of geothermal resources in the overnight area.
-
-
表 1 研究区地热水样品测试结果
Table 1. Test results of geothermal water samples in the study area
编号 位置 分类 类型 TDS T pH K+ Na+ Ca2+ Mg2+ Cl− SO42− HCO3− F− Li+ Sr2+ B3+ SiO2 XL-04 新龙县通宵地区 1 温泉 1 780 77 7.29 24.5 418 39.7 9.65 70.8 17.8 1 134 8.41 1.621 0.556 6.12 75.38 XL-10 新龙县通宵地区 1 温泉 546 59 7.26 3.68 122 9.55 0.807 22.3 10.5 297 8.11 0.126 0.097 1.34 72.62 XL-02 新龙县友谊乡查贡 2 温泉 183 32 9.13 0.523 43.4 1.77 0.018 2.59 12.4 93.9 3.26 0.016 6 0.006 0.91 26.15 GZ-01 甘孜县色西底乡雅砻江北岸 2 地热井 1 680 35 7.55 26.6 669 37.8 15.1 30.3 23.7 1892 5.10 3.636 0.896 12.5 93.08 GZ-02 甘孜县河坝社区地热井 2 温泉 1 353 83 9.15 27.0 379 0.472 0.488 10.0 33.1 626 12.6 1.07 0.013 6.69 133.85 注:单位为mg/L;T温度为℃;SiO2为偏硅酸的1/1.3。 表 2 氢氧同位素测试数据和补给区高程及补给区温度计算结果
Table 2. Hydroxyl isotope test data and recharge zone elevation and recharge zone temperature calculations
样点名称 δ2H(V-SMOW)/‰ δ18O(V-SMOW)/‰ 补给高程
(式7/m)补给高程
(式8/m)平均高程/
m补给区温度
(式9/℃)补给区温度
(式10/℃)平均温度/
℃XL-04 -155.6 -19.94 4 431.99 4 822.00 4 627.00 -9.12 -9.92 -9.52 XL-10 -158.2 -21.00 4 773.26 4 924.39 4 848.83 -10.64 -10.40 -10.52 表 3 热储温度计算结果/℃
Table 3. Calculation results of thermal reservoir temperature
编号 α-石英 玉髓 玉髓考虑
最大蒸汽硅焓图解法 XL-04 71.4 93.8 93.71 281.3 XL-10 69.4 91.6 91.99 185.7 -
[1] Wang G L, Zhang W, Ma F, et al. Overview on hydrothermal and hot dry rock researches in China[J]. China Geology, 2018, 1(2):273-285. doi: 10.31035/cg2018021
[2] Wang C G, Zheng M P. Hydrochemical characteristics and evolution of hot fluids in the gudui geothermal field in Comei County, Himalayas[J]. Geothermics, 2019, 81:243-258. doi: 10.1016/j.geothermics.2019.05.010
[3] 陈海雯, 宋荣彩, 张超, 等. 基于因子分析法的干热岩地热资源热储评价[J]. 成都理工大学学报(自然科学版), 2023, 50(3):333-350.CHEN H W, SONG R C, ZHANG C, et al. Evaluation of thermal storage of geothermal resources in dry hot rocks based on factor analysis method[J]. Journal of Chengdu University of Technology (Natural Science Edition), 2023, 50(3):333-350.
CHEN H W, SONG R C, ZHANG C, et al. Evaluation of thermal storage of geothermal resources in dry hot rocks based on factor analysis method[J]. Journal of Chengdu University of Technology (Natural Science Edition), 2023, 50(3):333-350.
[4] 章旭, 张文, 吕国森, 等. 川西阿坝州壤古温泉成因机制研究: 来自水文地球化学和地球物理勘探的证据[J]. 沉积与特提斯地质, 2023, 43(2):388-403.ZHANG X, ZHANG W, LYU G S, et al. Research on the genesis mechanism of the ancient hot springs in Aba Prefecture, western Sichuan: Evidence from hydrogeochemical and geophysical exploration[J]. Sedimentary and Tethyan Geology, 2023, 43(2):388-403.
ZHANG X, ZHANG W, LYU G S, et al. Research on the genesis mechanism of the ancient hot springs in Aba Prefecture, western Sichuan: Evidence from hydrogeochemical and geophysical exploration[J]. Sedimentary and Tethyan Geology, 2023, 43(2):388-403.
[5] 周鹏, 孙明露, 张云辉, 等. 藏南隆子县模麓温泉群水文地球化学特征及成因机制研究[J]. 沉积与特提斯地质, 2023, 43(2):322-339.ZHOU P , SUN M L, ZHANG Y H, et al. Hydrogeochemical characteristics and genetic mechanisms of the Molu hot spring group in Longzi County, southern Tibet[J]. Sedimentary and Tethyan Geology, 2023, 43(2):322-339.
ZHOU P , SUN M L, ZHANG Y H, et al. Hydrogeochemical characteristics and genetic mechanisms of the Molu hot spring group in Longzi County, southern Tibet[J]. Sedimentary and Tethyan Geology, 2023, 43(2):322-339.
[6] 申华梁, 杨耀, 周志华, 等. 川西理塘毛垭温泉群的成因及深部地热过程[J]. 地震地质, 2023, 45(3):689-709.SHEN H L, YANG Y , ZHOU Z H, et al. Genesis and deep geothermal processes of the Maoya Hot Spring Group in Litang, Western Sichuan[J]. Seismogeology, 2023, 45(3):689-709.
SHEN H L, YANG Y , ZHOU Z H, et al. Genesis and deep geothermal processes of the Maoya Hot Spring Group in Litang, Western Sichuan[J]. Seismogeology, 2023, 45(3):689-709.
[7] Chandrajith R, Barth J A C, Subasinghe N D, et al. Geochemical and isotope characterization of geothermal spring waters in Sri Lanka: Evidence for steeper than expected geothermal gradients[J]. Journal of Hydrology, 2013, 476:360-369. doi: 10.1016/j.jhydrol.2012.11.004
[8] 王国建, 宁丽荣, 李广之, 等. 沉积盆地型与隆起山地型地热系统地表地球化学异常模式差异性分析[J]. 地质论评, 2021, 67(1):117-128.WANG G J, NING L R, LI G Z, et al. Differential analysis of surface geochemical anomaly patterns between sedimentary basin type and uplift mountain type geothermal systems[J]. Geological Review, 2021, 67(1):117-128.
WANG G J, NING L R, LI G Z, et al. Differential analysis of surface geochemical anomaly patterns between sedimentary basin type and uplift mountain type geothermal systems[J]. Geological Review, 2021, 67(1):117-128.
[9] 宋春林, 孙向阳, 王根绪. 贡嘎山亚高山降水稳定同位素特征及水汽来源研究[J]. 长江流域资源与环境, 2015, 24(11):1860-1869.SONG C L, SUN X Y, WANG G X. Stable isotope characteristics and water vapor sources of precipitation in the subalpine area of Gongga Mountain[J]. Resources and Environment of the Yangtze River Basin, 2015, 24(11):1860-1869.
SONG C L, SUN X Y, WANG G X. Stable isotope characteristics and water vapor sources of precipitation in the subalpine area of Gongga Mountain[J]. Resources and Environment of the Yangtze River Basin, 2015, 24(11):1860-1869.
[10] Zhang J , Li W Y, Tang X C, et al. Geothermal data analysis at the high-temperature hydrothermal area in Western Sichuan[J]. Scientia Sinica(Terrae), 2016, 47(8):899-915.
[11] Qi J H, Xu M, An C J, et al. Characterizations of geothermal springs along the Moxi deep fault in the western Sichuan plateau, China[J]. Physics of the Earth and Planetary Interiors, 2017, 263:12-22. doi: 10.1016/j.pepi.2017.01.001
[12] 赵永久. 松潘—甘孜东部中生代中酸性侵入体的地球化学特征、岩石成因及构造意义[D]. 广州: 中国科学院研究生院(广州地球化学研究所), 2007.ZHAO Y J. Geochemical characteristics, petrogenesis and tectonic significance of Mesozoic intermediate acid intrusion in eastern Songpan Garze [D]. Guangzhou: Graduate School of Chinese Academy of Sciences (Guangzhou Institute of Geochemistry), 2007.
ZHAO Y J. Geochemical characteristics, petrogenesis and tectonic significance of Mesozoic intermediate acid intrusion in eastern Songpan Garze [D]. Guangzhou: Graduate School of Chinese Academy of Sciences (Guangzhou Institute of Geochemistry), 2007.
[13] 袁兴成, 张云辉, 王鹰, 等. 鲜水河断裂带地热水化学特征及结垢趋势分析[J]. 沉积与特提斯地质, 2023, 43(2):357-372.YUAN X C, ZHANG Y H, WANG Y, et al. Analysis of geothermal chemical characteristics and scaling trends in the Xianshui River Fault Zone[J]. Sedimentary and Tethyan Geology, 2023, 43(2):357-372.
YUAN X C, ZHANG Y H, WANG Y, et al. Analysis of geothermal chemical characteristics and scaling trends in the Xianshui River Fault Zone[J]. Sedimentary and Tethyan Geology, 2023, 43(2):357-372.
[14] 龙汨, 周训, 李婷, 等. 北京延庆县松山温泉的特征与成因[J]. 现代地质, 2014, 28(5): 1053-1060.LONG M, ZHOU X, LI T, et al. Characteristics and genesis of Songshan hot springs in Yanqing County, Beijing [J]. Modern Geology, 2014, 28 (5): 1053-1060
LONG M, ZHOU X, LI T, et al. Characteristics and genesis of Songshan hot springs in Yanqing County, Beijing [J]. Modern Geology, 2014, 28 (5): 1053-1060
[15] Craig H. Isotopic variations in meteoric waters[J]. Science, 196, 133(346): 1702-71703.
[16] Kong Y L, Wang K, Li J, et al. Stable isotopes of precipitation in China: A consideration of moisture sources[J]. Water: 2019. 11(6).
[17] Yapp J, Crayton. A model for the relationships between precipitation D/H ratios and precipitation intensity[J]. Journal of Geophysical Research Oceans, 1982, 87(C12):9614-9620. doi: 10.1029/JC087iC12p09614
[18] Fournier R O. Chemical geothermometers and mixing models for geothermal systems[J]. Geothermics, 1977, 5(1-4):41-750. doi: 10.1016/0375-6505(77)90007-4
[19] Giggenbach W F. Geothermal solute equilibria-derivation of Na-K-Mg-Ca geoindicators[J]. Geochimica et Cosmochimica Acta, 1988, 52(12):2749-72765. doi: 10.1016/0016-7037(88)90143-3
[20] 曹入文, 周训, 陈柄桦, 等. 四川巴塘县茶洛地区温泉及间歇喷泉水化学特征和成因分析[J]. 地学前缘, 2021, 28(4):361-372.CAO R W, ZHOU X, CHEN B H, et al. Analysis of the hydrochemical characteristics and genesis of hot springs and intermittent fountains in the Chaluo area of Batang County, Sichuan Province[J]. Frontiers of Geoscience, 2021, 28(4):361-372.
CAO R W, ZHOU X, CHEN B H, et al. Analysis of the hydrochemical characteristics and genesis of hot springs and intermittent fountains in the Chaluo area of Batang County, Sichuan Province[J]. Frontiers of Geoscience, 2021, 28(4):361-372.
-