碱浸体系中氧化剂对砷黄铁矿的选择性溶解及机理研究

金凯, 袁文彬, 王小龙, 覃文庆, 张雁生. 碱浸体系中氧化剂对砷黄铁矿的选择性溶解及机理研究[J]. 矿产综合利用, 2025, 46(2): 93-101. doi: 10.3969/j.issn.1000-6532.2025.02.014
引用本文: 金凯, 袁文彬, 王小龙, 覃文庆, 张雁生. 碱浸体系中氧化剂对砷黄铁矿的选择性溶解及机理研究[J]. 矿产综合利用, 2025, 46(2): 93-101. doi: 10.3969/j.issn.1000-6532.2025.02.014
JIN Kai, YUAN Wenbin, WANG Xiaolong, QIN Wenqing, ZHANG Yansheng. Selective Dissolution and Mechanism of Arsenopyrite by the Oxidizing Agent in Alkaline Leaching System[J]. Multipurpose Utilization of Mineral Resources, 2025, 46(2): 93-101. doi: 10.3969/j.issn.1000-6532.2025.02.014
Citation: JIN Kai, YUAN Wenbin, WANG Xiaolong, QIN Wenqing, ZHANG Yansheng. Selective Dissolution and Mechanism of Arsenopyrite by the Oxidizing Agent in Alkaline Leaching System[J]. Multipurpose Utilization of Mineral Resources, 2025, 46(2): 93-101. doi: 10.3969/j.issn.1000-6532.2025.02.014

碱浸体系中氧化剂对砷黄铁矿的选择性溶解及机理研究

  • 基金项目: 国家自然科学基金的支持(51974363)
详细信息
    作者简介: 金凯(1996-),男,硕士研究生,主要从事浮选电化学和浮选药剂研发
    通讯作者: 张雁生(1980-),男,博士,副教授,从事矿物加工和生物冶金研究
  • 中图分类号: TD953

Selective Dissolution and Mechanism of Arsenopyrite by the Oxidizing Agent in Alkaline Leaching System

More Information
  • 砷黄铁矿是一种常见的载金矿物,砷的存在导致金回收困难。本文研究了砷黄铁矿常压碱浸脱砷过程中,浸出时间、NaOH浓度、温度和高锰酸钾浓度对砷浸出率的影响,并结合电化学、动力学分析,阐明了高锰酸钾的助浸氧化机制。结果表明,当使用0.25 mol/L高锰酸钾作为氧化剂,NaOH浓度为3.5 mol/L时,砷浸出率最高,为63.72%。电化学与动力学分析表明,控制砷黄铁矿常压碱浸反应速率的决定性步骤是化学反应步骤,表观活化能为40.19 kJ/mol,高锰酸钾等氧化剂促进了砷黄铁矿碱浸初期铁的氧化溶解。

  • 加载中
  • 图 1  砷黄铁矿XRD分析

    Figure 1. 

    图 2  FeAsS-H2O体系Eh-pH(电位vs SHE)

    Figure 2. 

    图 3  各因素对砷浸出率的影响(a)时间;(b)KMnO4浓度;(c)NaOH浓度;(d)温度

    Figure 3. 

    图 4  表面拉曼光谱(a)原矿;(b)浸出渣

    Figure 4. 

    图 5  浸出前后砷黄铁矿表面XPS

    Figure 5. 

    图 6  浸出前砷黄铁矿XPS高分辨图谱(a)Fe 2p;(b)As 3d;(c)S 2p

    Figure 6. 

    图 7  浸出后XPS高分辨图谱(a)Fe 2p;(b)As 3d;(c)S 2p

    Figure 7. 

    图 8  浸出渣表面SEM(a)0.25 mol/L KMnO4、3.0 mol/L NaOH、45 ℃、24 h;(b)3.0 mol/L NaOH、45 ℃、24 h

    Figure 8. 

    图 9  砷黄铁矿循环伏安曲线(a)pH=7;(b)pH=14

    Figure 9. 

    图 10  砷黄铁矿循环伏安曲线(a)pH=7;(b)pH=14

    Figure 10. 

    图 11  不同反应温度下砷黄铁矿的动力学模型拟合

    Figure 11. 

    图 12  砷黄铁矿的阿伦尼乌斯曲线

    Figure 12. 

    表 1  砷黄铁矿的主要化学成分分析/%

    Table 1.  Main chemical composition analysis of arsenopyrite

    FeAsS其他合计
    理论34.3046.0119.690.0097.30
    实际33.1444.7819.382.70
    下载: 导出CSV

    表 2  25 ℃下砷黄铁矿碱浸反应的Eh-pH关系式

    Table 2.  Eh-pH equations for the alkaline leaching reaction of arsenopyrite at 25 ℃

    序号反应式Eh-pH关系式
    aO2+4H++4e-=2H2OEh=1.22-0.059pH
    bH2=2H++2e-Eh=-0.059pH
    1FeAsS+5OH-+3.5O2=Fe(OH)3+AsO43-+SO42-+H2OEh=1.34-0.021pH
    214MnO4-+FeAsS+19OH-=14MnO42-+8H2O+AsO43-+Fe(OH)3+SO42-Eh=2.31-0.080pH
    3FeAsS+1.5O2+3H2O=Fe(OH)3+H2AsO3-+S0+H+Eh=1.18-0.015pH
    4S0+2OH-+1.5O2=SO42-+H2OEh=1.39-0.020pH
    5H2AsO3-+2OH-+0.5O2=AsO43-+2H2OEh=1.98-0.059pH
    64MnO4-+4OH-=4MnO42-+2H2O+O2Eh=0.98-0.059pH
    76MnO4-+8OH-+S0=SO42-+4H2O+6MnO42-Eh=2.37-0.079pH
    82MnO4-+4OH-+H2AsO3-=2MnO42-+3H2O+AsO43-Eh=2.84-0.118pH
    下载: 导出CSV

    表 3  25 ℃时砷黄铁矿碱浸反应的反应平衡常数与吉布斯自由能

    Table 3.  Equilibrium constants and Gibbs free energy for the alkaline leaching reaction of arsenopyrite at 25 ℃

    序号 反应平衡
    常数
    吉布斯自由
    能 /(kJ/mol)
    序号 反应平衡
    常数
    吉布斯自由
    能 /(kJ/mol)
    1 243.664 -1 483.982 5 35.578 -218.387
    2 283.445 -1 726.259 6 11.366 -69.222
    3 85.933 -523.353 7 125.804 -766.179
    4 108.755 -662.347 8 41.261 -251.294
    下载: 导出CSV

    表 4  不同温度和高锰酸钾与氢氧化钠的不同浓度下砷的浸出率/%

    Table 4.  Recovery of As at different temperatures and different concentrations of NaOH and KMnO4

    药剂种类 用量/(mol/L) 30 ℃ 45 ℃ 60 ℃
    KMnO4
    (NaOH 2.5 mol/L,24 h)
    0.05 13.09 18.03 27.25
    0.10 18.39 25.57 34.32
    0.15 24.97 33.65 38.19
    0.20 32.73 39.31 43.27
    0.25 39.31 44.03 54.14
    NaOH
    (KMnO4 0.25 mol/L,24 h)
    2.00 37.99 40.65 50.76
    2.50 39.31 44.03 54.14
    3.00 39.70 44.23 62.65
    3.50 41.17 47.01 63.72
    下载: 导出CSV

    表 5  不同矿物的拉曼峰峰位

    Table 5.  Raman band positions of different minerals

    矿物种类 化学式 主要拉曼峰
    /cm−1
    次要拉曼峰
    /cm−1
    砷黄铁矿 FeAsS 217,280,392 127,231,333,
    427,453
    赤铁矿 ɑ-Fe2O3 222,290 230,408,490,607
    针铁矿 ɑ-FeO(OH) 297,384 477,545,655
    水合氧化铁 5Fe2O3·9H2O 707 361, 508, 1045
    雌黄 As2S3 379 152, 289, 200,308
    下载: 导出CSV

    表 6  未反应收缩核模型

    Table 6.  Shrinking core model equations

    #控制步骤方程式
    1液相传质1-3(1-x)2/3+2(1-x)=kt
    2表面化学反应1-(1-x)1/3=kt
    下载: 导出CSV
  • [1]

    陈京玉, 陈志国, 康卫刚. 新疆某伴生铜钴矿降砷回收工艺研究[J]. 矿产综合利用, 2019(1):51-56.CHEN J Y, CHEN Z G, KANG W G. Research on reducing arsenic and recovering mineral processing technology of certain arsenic-bearing copper ore in Xinjiang[J]. Multipurpose Utilization of Mineral Resources, 2019(1):51-56. doi: 10.3969/j.issn.1000-6532.2019.01.011

    CHEN J Y, CHEN Z G, KANG W G. Research on reducing arsenic and recovering mineral processing technology of certain arsenic-bearing copper ore in Xinjiang[J]. Multipurpose Utilization of Mineral Resources, 2019(1):51-56. doi: 10.3969/j.issn.1000-6532.2019.01.011

    [2]

    胡盘金, 郑永兴, 宁继来, 等. 含砷硫化铜矿浮选除砷研究进展[J]. 矿产综合利用, 2020(5):45-51.HU P J, ZHENG Y X, NING J L, et al. Research progress of arsenic removal from arsenic bearing copper sulphide ore by flotation[J]. Multipurpose Utilization of Mineral Resources, 2020(5):45-51. doi: 10.3969/j.issn.1000-6532.2020.05.005

    HU P J, ZHENG Y X, NING J L, et al. Research progress of arsenic removal from arsenic bearing copper sulphide ore by flotation[J]. Multipurpose Utilization of Mineral Resources, 2020(5):45-51. doi: 10.3969/j.issn.1000-6532.2020.05.005

    [3]

    李磊, 魏旭, 卢晶, 等. 安徽省宣州区茶亭铜多金属矿金赋存状态研究[J]. 矿产综合利用, 2020(2):118-121.LI L, WEI X, LU J, et al. Gold occurrence of chating copper polymetallic deposit of Xuanzhou district, Anhui Province[J]. Multipurpose Utilization of Mineral Resources, 2020(2):118-121. doi: 10.3969/j.issn.1000-6532.2020.02.021

    LI L, WEI X, LU J, et al. Gold occurrence of chating copper polymetallic deposit of Xuanzhou district, Anhui Province[J]. Multipurpose Utilization of Mineral Resources, 2020(2):118-121. doi: 10.3969/j.issn.1000-6532.2020.02.021

    [4]

    李林积, 王丹, 邱鹏玉. 西秦岭格尔托金矿金的赋存状态及可选性试验研究[J]. 矿产综合利用, 2019(4):83-86.LI L J, WANG D, QIU P Y. Experimental study on occurrence and optionality of gold in Gelto gold deposit, western Qinling[J]. Multipurpose Utilization of Mineral Resources, 2019(4):83-86. doi: 10.3969/j.issn.1000-6532.2019.04.017

    LI L J, WANG D, QIU P Y. Experimental study on occurrence and optionality of gold in Gelto gold deposit, western Qinling[J]. Multipurpose Utilization of Mineral Resources, 2019(4):83-86. doi: 10.3969/j.issn.1000-6532.2019.04.017

    [5]

    刘益萍. 提铜降砷的工艺矿物学研究[J]. 矿产综合利用, 2016(1):67-70+75.LIU Y P. Study on the process mineralogy of reducing arsenic in copper[J]. Multipurpose Utilization of Mineral Resources, 2016(1):67-70+75. doi: 10.3969/j.issn.1000-6532.2016.01.016

    LIU Y P. Study on the process mineralogy of reducing arsenic in copper[J]. Multipurpose Utilization of Mineral Resources, 2016(1):67-70+75. doi: 10.3969/j.issn.1000-6532.2016.01.016

    [6]

    李广明, 张洪恩. 硫化矿浮选除砷实践中矿石预处理的影响[J]. 矿产综合利用, 1989(1):45-48.LI G M, ZHANG H E. Effect of ore pretreatment in the practice of arsenic removal from sulphide ore flotation[J]. Multipurpose Utilization of Mineral Resources, 1989(1):45-48.

    LI G M, ZHANG H E. Effect of ore pretreatment in the practice of arsenic removal from sulphide ore flotation[J]. Multipurpose Utilization of Mineral Resources, 1989(1):45-48.

    [7]

    何晓川, 唐晓莲. 毒砂与方铅矿、黄铜矿分离试验研究[J]. 矿产综合利用, 1994(3):16-18.HE X C, TANG X L. Experimental study on the separation of arsenopyrite from galena and chalcopyrite[J]. Multipurpose Utilization of Mineral Resources, 1994(3):16-18.

    HE X C, TANG X L. Experimental study on the separation of arsenopyrite from galena and chalcopyrite[J]. Multipurpose Utilization of Mineral Resources, 1994(3):16-18.

    [8]

    MENG Y Q , WU M J, SU S L, et al. Intensified alkiline leaching pretreatment of refractory gold ore at ambient temperature and atmosphere pressure[J]. Nonferrous Metals, 2003(1): 43-47.

    [9]

    田树国. 高砷金矿常温常压碱浸预处理工艺研究[D]. 赣州: 江西理工大学, 2009.TIAN S G. Study on the pretreatment process of high arsenic gold ore by normal temperature and pressure alkaline leaching[D]. Ganzhou: Jiangxi University of Science and Technology , 2009.

    TIAN S G. Study on the pretreatment process of high arsenic gold ore by normal temperature and pressure alkaline leaching[D]. Ganzhou: Jiangxi University of Science and Technology , 2009.

    [10]

    WANG J, WANG W, BAI Y L, et al. Study on pre-oxidation of a high-arsenic and high-sulfur refractory gold concentrate with potassium permanganate and hydrogen peroxide[J]. Transactions of the Indian Institute of Metals, 2020, 73(3):577-586. doi: 10.1007/s12666-020-01863-6

    [11]

    ZHANG Y, Liu RQ, SUN W, et al. Electrochemical mechanism and flotation of chalcopyrite and galena in the presence of sodium silicate and sodium sulfite[J]. Transactions of Nonferrous Metals Society of China, 2020, 30(4):1091-1101. doi: 10.1016/S1003-6326(20)65280-3

    [12]

    ASTA M P, PéREZ-LóPEZ R, ROMáN-ROSS G, et al. Analysis of the iron coatings formed during marcasite and arsenopyrite oxidation at neutral-alkaline conditions[J]. Geologica Acta, 2013, 11(4):465-481.

    [13]

    Kharbish S, Andráš P. Investigations of the Fe sulfosalts berthierite, garavellite, arsenopyrite and gudmundite by Raman spectroscopy[J]. Mineralogical Magazine, 2014, 78(5):1287-1300. doi: 10.1180/minmag.2014.078.5.13

    [14]

    Das S, Hendry M J. Application of Raman spectroscopy to identify iron minerals commonly found in mine wastes[J]. Chemical Geology, 2011, 290(3-4):101-108. doi: 10.1016/j.chemgeo.2011.09.001

    [15]

    Suess E, Planer-Friedrich B. Thioarsenate formation upon dissolution of orpiment and arsenopyrite[J]. Chemosphere, 2012, 89(11):1390-1398. doi: 10.1016/j.chemosphere.2012.05.109

  • 加载中

(12)

(6)

计量
  • 文章访问数:  26
  • PDF下载数:  5
  • 施引文献:  0
出版历程
收稿日期:  2022-04-18
刊出日期:  2025-04-25

目录