Pb-Sr-Nd-Hf 同位素参数计算及程序设计

路远发|李文霞. 2021. Pb-Sr-Nd-Hf 同位素参数计算及程序设计. 华南地质, 37(2): 233-245. doi: 10.3969/j.issn.2097-0013.2021.02.010
引用本文: 路远发|李文霞. 2021. Pb-Sr-Nd-Hf 同位素参数计算及程序设计. 华南地质, 37(2): 233-245. doi: 10.3969/j.issn.2097-0013.2021.02.010
LU Yuan-Fa|LI Wen-Xia. 2021. Calculation and Program Design for Pb-Sr-Nd-Hf Isotopic Parameters. South China Geology, 37(2): 233-245. doi: 10.3969/j.issn.2097-0013.2021.02.010
Citation: LU Yuan-Fa|LI Wen-Xia. 2021. Calculation and Program Design for Pb-Sr-Nd-Hf Isotopic Parameters. South China Geology, 37(2): 233-245. doi: 10.3969/j.issn.2097-0013.2021.02.010

Pb-Sr-Nd-Hf 同位素参数计算及程序设计

详细信息
    作者简介: 路远发(1959—),男,教授,研究方向为岩矿地球化学与同位素地球化学,E-mail: lyuanfa@vip.163.com
  • 中图分类号: P736.4+4

Calculation and Program Design for Pb-Sr-Nd-Hf Isotopic Parameters

  • Pb、Sr、Nd、Hf 同位素都是放射性成因的重稳定同位素,地质过程中不发生同位素分馏,因而其同位素组成只与来源有关而与过程无关。这些同位素组成是成岩(成矿)物质来源及其构造环境判别的重要标志,特别是在研究壳幔分离与壳幔相互作用中起着不可替代的作用。由于这些参数的计算涉及相对复杂的公式推导,许多地质工作者并未系统学习过同位素地球化学理论,在对公式与参数的理解上难免会出现偏差,导致数据处理错误。本文对铅- 锶- 钕- 铪同位素的相关参数以及这些参数的计算公式作一全面的介绍,在此基础上,作者应用Excel VBA 设计了一套计算机程序。该程序界面友好、使用方便、结果可靠。
  • 加载中
  • [1]

    路远发. 南岭地区产于碳酸盐岩中铅锌矿床的成因[J].湖南地质, 1993,(1): 23-28.[br][2] Stacey J S, Kramers J D. Approximation of terrestrial lead isotope evolution by a two-stage model [J]. Earth and Planetary Science Letters, 1975, 26(2): 207-221. [br][3] 朱炳泉. 矿石Pb 同位素三维空间拓扑图解用于地球化学省与矿种区划[J]. 地球化学,1993,(3): 209-216. [br][4] 常向阳, 朱炳泉. Pb 同位素三维空间拓扑投影与化探评价[J]. 地球学报, 1997, 18(S1): 182-184. [br][5] 常向阳, 朱炳泉, 邹 日. 铅同位素系统剖面化探与隐伏矿深度预测—— 以云南金平龙脖河铜矿为例[J].中国科学(D 辑), 2000,30(1): 33-39. [br][6] 陈江峰, 江博明. Nd、Sr、Pb 同位素示踪和中国东南大陆地壳演化[M].// 郑永飞(主编),化学地球动力学论文集,北京: 科学出版社, 1999:262-287. [br][7] Jacobsen S B. Isotopic Constraints on Crustal Growth and Recycling [J]. Earth and Planetary Science Letters, 1988, 90(3): 315-329. [br][8] Liew T C, Hofmann A W. Precambrian Crustal Components, Plutonic Associations, Plate Environment of the Hercynian Fold Belt of Central Europe: Indications From a Nd and Sr Isotopic Study[J]. Contributions to Mineralogy and Petrology, 1988, 98(2): 129-138. [br][9] 李献华, 赵振华, 桂训唐, 于津生. 华南前寒武纪地壳形成时代的Sm-Nd 和锆石U-Pb 同位素制约[J]. 地球化学, 1991,(3): 255-264. [br][10] 吴福元,李献华,郑永飞,高 山. Lu-Hf 同位素体系及其岩石学应用[J]. 岩石学报, 2007, 23(2): 185-220. [br][11] Jaffey A H, Flynn K F, Glendenin L E, Bentley W C, Essling A M. Precision Measurement of Half-lives and Specific Activities of 235U and238U[J]. Physical Review C, 1971, 4(5): 1889-1906. [br][12] Steiger R, Jäger E. Subcommission on geochronology convention on the use of decay constants in geo- and cosmochronology[J]. Earth and Planetary Science Letters,1977, 36(3): 359-362. [br][13] Cowan G A, Adler H H. The variability of the natural abundance of 235U[J]. Geochimica et Cosmochimica Acta, 1976, 40(12): 1487-1490. [br][14] Tatsumoto M, Knight R J, Allegre C J. Time differences in the formation of meteorites as determined from the ratio of lead-207 to lead-206[J]. Science, 1973, 180(4092): 1279-1283. [br][15] Depaolo D J. Implications of Correlated Nd and Sr Isotopic Variations for the Chemical Evolution of Crust and Mantle[J]. Earth and Planetary Science Letters, 1979, 43(2): 201-211. [br][16] Hans U, Kleine T, Bourdon B. Rb–Sr chronology of volatile depletion in differentiated protoplanets: BABI, ADOR and ALL revisited [J]. Earth and Planetary Science Letters, 2013, 374, 204-214. [br][17] Lugmair GW, Marti K. Lunar initial 143Nd/144Nd: differential evolution of the lunar crust and mantle[J]. Earth and Planetary Science Letters, 1978, 39:349-357. [br][18] Jacobsen S B, Wasserburg G J. Sm-Nd isotopic evolution of chondrites[J]. Earth and Planetary Science Letters, 1980, 50(1): 139-155. [br][19] Jahn B M, Condie K C. Evolution of the Kaapvaal Craton as viewed from geochemical and Sm-Nd isotopic analyses of intracratonic pelites[J]. Geochimica et Cosmochimica Acta, 1995, 59(11): 2239-2258. [br][20] Söderlund U, Patchett P J, Vervoort J D, Isachsen C E. The 176Lu Decay Constant Determined By Lu-Hf and U-Pb Isotope Systematics of Precambrian Mafic Intrusions [J]. Earth and Planetary Science Letters, 2004, 219(3-4): 311-324. [br][21] Blichert-Toft J, Albarède F. The Lu-Hf geochemistry of chondrites and the evolution of the mantle-crust system [J]. Earth and Planetary Science Letters, 1997, 148: 243-258. [br][22] Griffin W L, Pearson N J, Belousova E, Jackson S E, van Achterbergh E, O’Reilly S Y, Shee S R. The Hf isotope composition of cratonic mantle: LAM-MCICPMS analysis of zircon megacrysts in kimberlites [J]. Geochimica et Cosmochimica Acta, 2000, 64(1): 133-147. [br][23] GERM. Geochemical Earth Reference Model[OL]. http://earthref.org/GERM/, 2001. [br][24] Griffin W L,Wang X, Jackson S E, Pearson N J, O’Reilly S Y, Xu X S, Zhou X M. Zircon Chemistry and Magma Mixing, SE China: In-situ Analysis of Hf Isotopes, Tonglu and Pingtan Igneous Complexes[J]. Lithos, 2002, 61(3): 237-269. [br][25] 路远发. GeoKit:一个用VBA 构建的地球化学工具软件包[J]. 地球化学, 2004, 33(5): 459-464. [br][26] 许继锋, 韩吟文. 秦岭古MORB 型岩石的高放射性成因铅同位素组成—— 特提斯型古洋幔存在的证据[J].中国科学(D 辑), 1996, 22(S1):34-41. [br][27] 高 庚, 徐兆文, 杨小男, 王云健, 张 军, 蒋少涌, 凌洪飞. 安徽铜陵白芒山辉石闪长岩体的成因:Sr-Nd-Pb-O同位素制约[J]. 南京大学学报( 自然科学版), 2006,42(3): 52-62. [br][28] 胡文洁, 田世洪, 杨竹森, 张兆卿. 拉萨地块西段中新世查加寺钾质火山岩岩石成因[J]. 矿床地质, 2012,31(4): 813-830. [br][29] 田世洪, 杨竹森, 侯增谦, 刘英超,宋玉财,王富春,薛万文. 青海玉树东莫扎抓铅锌矿床S、Pb、Sr-Nd 同位素组成: 对成矿物质来源的指示[J]. 岩石学报, 2011,27(7): 2173-2183. [br][30] 朱弟成,莫宣学,王立全,赵志丹,牛耀龄,周长勇,杨岳衡. 西藏冈底斯东部察隅高分异I 型花岗岩的成因:锆石U-Pb 年代学、地球化学和Sr-Nd-Hf 同位素约束 [J].中国科学(D 辑),2009,39(7): 833-848. [br]

  • 加载中
计量
  • 文章访问数:  866
  • PDF下载数:  112
  • 施引文献:  0
出版历程
收稿日期:  2021-04-06
修回日期:  2021-05-05

目录