Demonstration onEmergency Groundwater Field inHongtang Bay, Sanya City of Hainan Province
-
摘要: 为解决季节性干旱和突发事件引起的供水紧张与保障重大工程红塘湾海上机场建设的应急供水安全,在三亚地区环境地质综合调查的基础上,从水质评价、地下水资源量和应急水源地保障程度等方面开展红塘湾地区应急地下水源地论证评价工作。论证结果表明,本区水源地内松散-半固结岩类孔隙承压水水质质量等级为Ⅴ级,超标组分为铁、锰及微生物。在考虑越流补给的条件下,红塘湾应急地下水源地按可采控制降深10m可得应急供水量为3900m3/d;3个月的应急期内可提供的总地下水资源开采量为3.51×105m3,在海岸线一带引起的水位降深小于0.039m,不会引起地下水降落漏斗和海水入侵等环境地质问题。三亚红塘湾地下水源地能保证海上新建机场及周边近5.2万人3个月的应急供水需要,对于保障和服务红塘湾新建机场的正常运转意义重大。Abstract: Itis key problem to solve the shortage of water supply due to seasonal droughts and emergencies, and to ensure the safety of emergency water supply for the major construction of Hongtang Bay Maritime Airport in Sanya City of Hainan Province.Based on the comprehensive survey of regional environmental geology in the Sanya area, the authors carried out the demonstration and evaluation of emergency groundwater sources,including water quality evaluation, groundwater resources and the degree of guarantee of emergency water sources. Our studies show that the water quality grade of the loose to semi-consolidated rock pore confined water in the water source is Grade V, with the excessive components of iron, manganese and microorganisms. Under the condition of overflowing recharge, the Hongtang Bay emergency groundwater field can provide the water supply of 3900m3/d according to the controlled drawdowndepth of 10m, and the total amount of groundwater resources of 3.51×105m3within 3 months emergency period, but lead to water level drop to be only less than 0.039m deep along the coastline which will not cause environmental geological problems such as groundwater drop funnel and salt water intrusion. The groundwater field can guarantee emergency water supply needs of nearly 52000 people in the new airport and the surrounding areas for three months, andhave great significance for ensuring the normal operation of the newly built Hongtang Bay airport.
-
-
[1] 童军, 皮景, 徐定芳, 巫政卿. 长株潭城市群核心区地下水应急供水研究[J]. 华南地质与矿产,2020, 36(1): 55-64.
[2] 谢乐云, 杨文涛. 浅谈地下水人工补给问题[J]. 西部探矿工程, 2003, (9): 174-175.
[3] 童军, 徐定芳, 范毅, 何阳. 湘潭市河西应急地下水源地评价[J]. 华南地质与矿产, 2019, 35(4): 463-471.
[4] 徐磊磊, 刘海清, 金琰, 侯媛媛, 赵云龙. 海南省水资源开发利用特点及主要水资源问题[J]. 热带农业科学, 2017, 37(9): 120-127.
[5] 任毅, 卢治文, 李冬梅, 韩妮妮, 云大捷, 张国强. 海南省供水设施现状分析与规划建设建议[J]. 中国农村水利水电, 2020,(7), 222-2224.
[6] 彭鹏, 蔡国军, 刘松玉, 祝刘文, 赵健, 夏涵. 基于CPTU的三亚新机场海洋软土工程特性评价[J]. 岩土工程学报, 2017, 39(S2): 140-144.
[7] 刘金锋. 吉林市城区饮用水地下水应急水源地的研究[D]. 吉林: 吉林大学, 2017.
[8] 卢长军. 天津市武清北应急供水水源地地下水资源评价[D]. 北京: 中国地质大学(北京), 2007.
[9] 韩晓刚. 城市水源水质风险评价及应急处理方法研究[D]. 陕西: 西安建筑科技大学, 2011.
[10] 王丽彩. 哈依煤气突发性水污染事故风险评估-应急体系研究[D]. 黑龙江: 哈尔滨工业大学, 2010.
[11] 李雪衍. 关于建设赣州市城市应急饮用水源的思考[J]. 科技情报开发与经济, 2009, 19(1):138-140.
[12] 万显会. 城市应急水源地生态服务功能保护与开发的研究和应用[D]. 福建: 厦门大学, 2008.
[13] 吴新燕,顾建华. 国内外城市灾害应急能力评价的研究进展[J]. 自然灾害学报, 2007, 16(6): 109-114.
[14] 张晓健. 松花江和北江水污染事件中的城市供水应急处理技术[J]. 给水排水, 2006, 32(6): 6-12.
[15] 卜华, 王义生, 陈占成, 张良鹏. 应急供水水源地评价研究方法探讨[J]. 山东国土资源, 2007, 23(8): 1-4.
[16] 国土资源部.地下水水质标准(DZ/T 0290-2015)[S].2016.
[17] 程继雄, 程胜高, 张炜. 地下水质量评价常用方法的对比分析[J]. 安全与环境工程, 2008, 15(2): 23-25.
[18] 张丰, 李爱军. 山东省济宁城市应急供水水源地研究[J]. 中国地质灾害与防治学报, 2008, 19(4): 110-114.
[19] 孙毅, 杨继富, 李斌, 潘祎男. 农村供水中铁锰超标水处理技术研究—以辽宁省为例[J]. 济南职业学院学报, 2015, (5): 81-83.
[20] 秦甜甜, 丁国辉. 基于抽水试验的水文地质参数计算方法研究[J]. 水资源开发与管理, 2018, 000(001): 69-73.
[21] 刘道维, 李铁男, 徐柳娟. 嘉荫县地下水资源量计算及供需平衡分析[J]. 安徽农学通报, 2014, 20(13): 146-149.
[22] 凤蔚, 王晓燕, 刘振英, 李文鹏, 李海涛. 松散岩类承压含水层影响半径计算方法[J]. 人民黄河, 2017, 39(12): 57-61.
[23] 陈丰, 胡玉山. 拐点半对数法计算水文地质参数[J]. 山西建筑, 2010, 36(35): 79-80.
[24] 李振函, 张春荣, 朱伟. 日照市沿海地区海水入侵现状与分析[J]. 水文地质工程地质, 2009, 36(5): 129-132.
[25] 鄂春勇, 潘树仁, 潘邦君. 基于图解技法的井损参数求解[J]. 江苏煤炭, 2003, (1):8+32.
[26] 刘芳, 胡光宇. 试析地下水开采布井方法[J]. 水能经济, 2016,(1): 112-113.
[27] 解爱华, 宋朝辉. 合理选择井距确定打井数量经验谈[J]. 城市建筑, 2013,(2): 272.
[28] 李伟光, 陈汇林, 朱乃海, 陈珍莉. 标准化降水指标在海南岛干旱监测中的应用分析[J]. 中国生态农业学报, 2009, 17(1): 178-182.
[29] 邹红丽, 李建东. 水井处理技术探讨、研究与开发[J]. 工业技术经济, 2002,(3): 92-94.
[30] 韩晓刚. 城市水源水质风险评价及应急处理方法研究[D]. 陕西: 西安建筑科技大学, 2011.
-
计量
- 文章访问数: 333
- PDF下载数: 79
- 施引文献: 0