Crustal evolution in Archean for the Kongling Complex in the Yangtze Craton Nucleus
-
摘要: 扬子陆核黄陵穹隆出露了目前扬子克拉通已知的最古老结晶基底——崆岭杂岩,是了解扬子克拉通太古宙地壳形成与演化的理想窗口。本文将近年来崆岭杂岩太古宙岩石的锆石U-Pb年代学、Hf同位素以及地球化学研究成果进行了总结,对扬子陆核太古宙岩石时空分布规律及地壳演化的动力学过程进行了约束。结果表明,扬子陆核地壳演化过程可分为始太古代原始地壳形成与演化、中太古代早期地壳生长、中太古代晚期加厚地壳熔融、新太古代地壳生长与再造以及新太古代末地壳岩石变质改造等五个阶段,对应了太古宙地质演化的五个阶段。Abstract: The Kongling Complex exposed in the Huangling Dome is the known oldest crystalline basement in the Yangtze Craton nucleus, thus being an ideal window for understanding the formation and evolution of Yangtze Craton Archean continental crust. This paper summarized the research achievement on Archean Kongling Complex through zircon U-Pb chronology, Hf isotope and geochemistry methods in recent years, and revealed the temporal and spatial distribution rules of Archean Yangtze nucleus rocks and constrained the geodynamic processes of crustal evolution. It is concluded that the formation and evolution has been divided into five periods, namely the formation and evolution of the primitive crust in the Eoarchean, the crustal growth in the early Mesoarchean, the melting of thickened crust during the late Mesoarchean, the growth and reformation of crust in the Neoarchean, and the metamorphism of crustal rocks at the late Neoarchean, corresponding to the five stages of the geological evolution of the Archean.
-
Key words:
- Kongling Complex /
- Archean /
- crustal evolution /
- geodynamic processes
-
-
[1] 韩庆森, 彭松柏, 焦淑娟. 2020.扬子克拉通古元古代冷俯冲低温-高压榴辉岩相变泥质岩的发现及其大地构造意义[J]. 地球科学, 45(6): 1986-1998.
[2] 湖北省地质局. 1990.湖北省区域地质志[M]. 北京: 地质出版社.
[3] 邱啸飞, 江 拓, 吴年文, 赵小明, 徐 琼. 2020.大别造山带新太古代地壳岩石和古元古代混合岩化作用——来自锆石U-Pb年代学和Hf同位素证据[J]. 地质学报, 94(3): 729-738.
[4] 邱啸飞, 杨红梅, 卢山松, 谭娟娟, 蔡应雄. 2015.扬子陆核古元古代A型花岗岩的年代学与地球化学研究及其构造意义 [J]. 现代地质, 29(4): 884-895.
[5] 邱啸飞, 杨红梅, 卢山松, 张利国, 段瑞春, 杜国民. 2016.扬子克拉通崆岭杂岩孔兹岩系同位素年代学研究及其地质意义[J]. 大地构造与成矿学, 40(3): 549-558.
[6] 邱啸飞, 杨红梅, 张利国, 赵小明, 段桂玲, 卢山松, 谭娟娟, 施 念. 2015.扬子陆块庙湾蛇绿岩中橄榄岩的同位素年代学及其构造意义[J]. 地球科学, 40(7): 1121-1128.
[7] 邱啸飞, 杨红梅, 赵小明, 卢山松, 江 拓, 段瑞春, 刘重芃, 彭练红, 魏运许. 2019.扬子克拉通崆岭杂岩新太古代花岗片麻岩成因及其构造意义[J]. 地球科学, 44(2): 415-426.
[8] 邱啸飞, 赵小明, 杨红梅, 魏运许, 吴年文, 卢山松, 江 拓, 彭练红. 2017.扬子陆核古元古代变质事件——来自孔兹岩系变质锆石U-Pb同位素年龄的证据[J]. 地质通报, 36(5): 706-714.
[9] 孙卫东, 谢国治, 张丽鹏, 刘 鹤, 李聪颖, 孙赛军. 2021.板块俯冲起始与大陆地壳演化[J]. 地质学报, 95(1): 32-41.
[10] 万渝生, 颉颃强, 董春艳, 刘敦一. 2020.华北克拉通太古宙构造热事件时代及演化[J]. 地球科学, 45(9): 3119-3160.
[11] 魏君奇, 景明明. 2013.崆岭杂岩中角闪岩类的年代学和地球化学[J]. 地质科学, 48(4): 970-983.
[12] 魏君奇, 王建雄. 2012.崆岭杂岩中斜长角闪岩包体的锆石年龄和Hf同位素组成[J]. 高校地质学报, 18(4): 589-600.
[13] 魏运许, 徐大良, 周文孝, 万渝生, 黄显校, 赵小明, 段其发, 杨世平. 2018.扬子克拉通核部黄陵地区中太古代花岗杂岩中发现3.00~2.93Ga变质事件[J]. 地球科学, 43(7): 2309-2312.
[14] 徐 琼, 江 拓, 侯林春, 赵小明, 童喜润, 散飞雪, 邱啸飞. 2021.扬子陆块三峡地区莲沱组砂岩中碎屑锆石U-Pb年龄、Hf同位素组成及其地质意义[J]. 地球科学, 46(4): 1217-1230.
[15] 严溶, 周汉文, 曾雯, 江麟生, 周忠友, 陈铁龙. 2006.湖北宜昌崆岭群孔兹岩系地球化学特征[J]. 地质科技情报, 25(5): 41-46.
[16] 翟明国, 赵 磊, 祝禧艳, 焦淑娟, 周艳艳, 周李岗. 2020.早期大陆与板块构造启动—前沿热点介绍与展望[J]. 岩石学报, 36(8): 2249-2275.
[17] 赵国春, 张国伟. 2021.大陆的起源[J]. 地质学报, 95(1): 1-19.
[18] Chen K, Gao S, Wu Y B, Guo J L, Hu Z C, Liu Y S, Zong K Q, Liang Z W, Geng X L. 2013. 2.6–2.7 Ga crustal growth in Yangtze craton, South China [J]. Precambrian Research, 224: 472-490.
[19] Cui X Z, Wang J, Wang X C, Wilde S A, Ren G M, Li S J, Deng Q, Ren F, Liu J P. 2021.Early crustal evolution of the Yangtze Block: Constraints from zircon U-Pb-Hf isotope systematics of 3.1–1.9 Ga granitoids in the Cuoke Complex, SW China[J]. Precambrian Research, 357: 106155.
[20] Gao S, Yang J, Zhou L, Li M, Hu Z C, Guo J L, Yuan H L, Gong H J, Xiao G Q, Wei J Q. 2011.Age and growth of the Archean Kongling terrain, South China, with emphasis on 3.3 Ga granitoid gneisses [J]. American Journal of Science, 311: 153-182.
[21] Guo J L, Gao S, Wu Y B, Li M, Chen K, Hu Z C, Liang Z W, Liu Y S, Zhou L, Zong K Q. 2014.3.45 Ga granitic gneisses from the Yangtze Craton, South China: Implications for Early Archean crustal growth [J]. Precambrian Research, 242: 82-95.
[22] Guo J L, Wu Y B, Gao S, Jin Z M, Zong K Q, Hu Z C, Chen K, Chen H H, Liu Y S. 2015. Episodic Paleoarchean-Paleoproterozoic (3.3-2.0Ga) granitoid magmatism in Yangtze craton, South China: implications for late Archean tectonics[J]. Precambrian Research, 270: 246-266.
[23] Han P Y, Guo J L, Chen K, Huang H, Zong K Q, Liu Y S, Hu Z C, Gao S. 2017.Widespread Neoarchean (~2.7-2.6 Ga) magmatism of the Yangtze craton, South China, as revealed by modern river detrital zircons [J]. Gondwana Research, 42: 1-12.
[24] Han Q S, Peng S B, Kusky T, Polat A, Jiang X F, Cen Y, Liu S F, Deng H. 2017.A Paleoproterozoic ophiolitic mélange, Yangtze craton, South China: Evidence for Paleoproterozoic suturing and microcontinent amalgamation[J]. Precambrian Research, 293: 13-38.
[25] Huang X L, Niu Y, Xu Y G, Yang Q J, Zhong J W. 2010.Geochemistry of TTG and TTG-like gneisses from Lushan-Taihua complex in the southern North China Craton: Implications for late Archean crustal accretion [J]. Precambrian Research, 182: 43-56.
[26] Jiao W F, Wu Y B, Yang S H, Peng M, Wang J. 2009.The oldest basement rock in the Yangtze Craton revealed by zircon U-Pb age and Hf isotope composition [J]. Science in China Series D: Earth Sciences, 52(9): 1393-1399.
[27] Li L M, Lin S F, Davis D W, Xiao W J, Xing G F, Yin C Q. 2014.Geochronology and geochemistry of igneous rocks from the Kongling terrane: implications for Mesoarchean to Paleoproterozoic crustal evolution of the Yangtze block[J]. Precambrian Research, 255: 30-47.
[28] Li Y H, Zheng J P, Ping X Q, Xiong Q, Xiang L, Zhang H. 2018. Complex growth and reworking processes in the Yangtze cratonic nucleus [J]. Precambrian Research, 311: 262-277.
[29] Ling W L, Gao S, Zheng H F, Zhou L, Zhao Z. 1998.Sm-Nd isotopic dating of Kongling terrain [J]. Chinese Science Bulletin, 43: 86-89.
[30] Liu B, Zhai M G, Zhao L, Cui X H, Zhou L G. 2019. Zircon U-Pb-Hf isotope studies of the early Precambrian metasedimentary rocks in the Kongling terrane of the Yangtze Block, South China [J]. Precambrian Research, 320: 334-349.
[31] Liu X M, Gao S, Diwu C R, Ling W L. 2008. Precambrian crustal growth of Yangtze Craton as revealed by detrital zircon studies [J]. American Journal of Sciences, 308: 421-468.
[32] Nutman A P, Mcgregor V R, Friend C R L, Bennett V C, Kinny P D. 1996. The Itsaq Gneiss Complex of southern West Greenland: the world's most extensive record of early crustal evolution (3900-3600 Ma) [J]. Precambrian Research, 78: 1-39.
[33] Peng M, Wu Y B, Gao S, Zhang H F, Wang J Q, Liu X M, Gong H J, Zhou L, Hu Z C, Liu Y S. 2012.Geochemistry, zircon U-Pb age and Hf isotope compositions of Paleoproterozoic aluminous A-type granites from the Kongling terrain, Yangtze Block: Constraints on petrogenesis and geologic implications [J]. Gondwana Research, 22: 140-151.
[34] Qiu X F, Deng X, Jiang T, Xu Q, Yang W W. 2021.First discovery of Hadean xenocrystal zircons from granitic gneisses in the northern Dabie orogen [J]. Acta Geologica Sinica (English Edition), 95(5): 1775-1776.
[35] Qiu X F, Ling W L, Liu X M, Lu S S, Jiang T, Wei Y X, Peng L H, Tan J J. 2018a. Evolution of the Archean continental crust in the nucleus of the Yangtze block: Evidence from geochemistry of 3.0 Ga TTG gneisses in the Kongling high-grade metamorphic terrane, South China [J]. Journal of Asian Earth Sciences, 154: 149-161.
[36] Qiu X F, Zhao X M, Yang H M, Lu S S, Wu N W, Jiang T, Gu T, Wang Y F. 2018b. Geochemical and Nd isotopic compositions of the Palaeoproterozoic metasedimentary rocks in the Kongling complex, nucleus of Yangtze craton, South China block: implications for provenance and tectonic evolution[J].Geological Magazine, 155(6): 1263-1276.
[37] Qiu Y M, Gao S, McNaughton N J, Groves D I, Ling W L. 2000. First evidence of >3.2 Ga continental crust in the Yangtze craton of south China and its implications for Archean crustal evolution and Phanerozoic tectonics [J]. Geology, 28: 11-14.
[38] Turner S, Wilde S, Wörner G, Schaefer B, Lai Y J. 2020. An andesitic source for Jack Hills zircon supports onset of plate tectonics in the Hadean [J]. Nature Communications, 11(1): 1241.
[39] Wan Y S, Xie H Q, Dong C Y, Kröner A, Wilde S A, Bai W Q, Liu S J, Xie S W, Ma M Z, Li Y, Liu D Y. 2019. Hadean to Paleoarchean rocks and zircons in China. In: Kranendonk, M.J.V. (Ed.), Earth's Oldest Rocks (Second Edition) [M]. Elsevier, Amsterdam.
[40] Wei J Q, Wei Y X, Wang J X, Wang X D. 2020.Geochronological constraints on the formation and evolution of the Huangling basement in the Yangtze craton, South China [J]. Precambrian Research, 342: 105707.
[41] Wei J Q. 2021. Petrology and geochemistry of the Archean Huangling greenstone belt in the Yangtze Craton, South China [J]. Precambrian Research, 364: 106340.
[42] Wei Y X, Zhou W X, Hu Z X, Li H Q, Huang X X, Zhao X M, Xu D L. 2019. Geochronology and Geochemistry of Archean TTG and Tremolite Schist Xenoliths in Yemadong Complex: Evidence for ≥3.0 Ga Archean[J]. Minerals, 9: 689.
[43] Windley B, Kusky T M, Polat A. 2021.Onset of plate tectonics by the Eoarchean[J]. Precambrian Research, 352(6): 105980.
[44] Xiong Q, Zheng J P, Yu C M, Su Y P, Tang H Y, Zhang Z H. 2009. Zircon U-Pb age and Hf isotope of Quanyishang A-type granite in Yichang: Signification for the Yangtze continental cratonization in Paleoproterozoic [J]. Chinese Science Bulletin, 54: 436-446.
[45] Yin C Q, Lin S F, Davis D W, Zhao G C, Xiao W J, Li L M, He Y H. 2013. 2.1-1.85 Ga tectonic events in the Yangtze Block, South China: Petrological and geochronological evidence from the Kongling Complex and implications for the reconstruction of supercontinent Columbia[J]. Lithos, 182: 200-210.
[46] Zhang S B, Zheng Y F, Wu Y B, Zhao Z F, Gao S, Wu F Y. 2006a. Zircon U-Pb age and Hf-O isotope evidence for Paleoproterozoic metamorphic event in South China[J]. Precambrian Research, 151(3): 265-288.
[47] Zhang S B, Zheng Y F, Wu Y B, Zhao Z F, Gao S, Wu F Y. 2006b. Zircon U-Pb age and Hf isotope evidence for 3.8 Ga crustal remnant and episodic reworking of Archean crust in South China [J]. Earth and Planetary Science Letters, 252: 56-71.
[48] Zhong Y T, Kusky T, Wang L, Polat A, Liu X Y, Peng Y Y, Luan Z K, Wang C H, Wang J P, Deng H.2021.Alpine-style nappes thrust over ancient North China continental margin demonstrate large Archean horizontal plate motions [J]. Nature Communications, 12: 6172.
-
计量
- 文章访问数: 1614
- PDF下载数: 171
- 施引文献: 0