右江盆地东缘早泥盆世莫丁组硅质岩地球化学特征及地质意义

刘飞, 严乐佳, 李堃, 黄圭成, 汤朝阳, 邱啸飞. 2022. 右江盆地东缘早泥盆世莫丁组硅质岩地球化学特征及地质意义. 华南地质, 38(1): 135-146. doi: 10.3969/j.issn.2097-0013.2022.01.010
引用本文: 刘飞, 严乐佳, 李堃, 黄圭成, 汤朝阳, 邱啸飞. 2022. 右江盆地东缘早泥盆世莫丁组硅质岩地球化学特征及地质意义. 华南地质, 38(1): 135-146. doi: 10.3969/j.issn.2097-0013.2022.01.010
LIU Fei, YAN Le-Jia, LI Kun, HUANG Gui-Cheng, TANG Chao-Yang, QIU Xiao-Fei. 2022. GeochemicalCharacteristics and Geological Significance of Siliceous Rocks in ModingFormation of Early Devonian in Eastern Margin of Youjiang Basin. South China Geology, 38(1): 135-146. doi: 10.3969/j.issn.2097-0013.2022.01.010
Citation: LIU Fei, YAN Le-Jia, LI Kun, HUANG Gui-Cheng, TANG Chao-Yang, QIU Xiao-Fei. 2022. GeochemicalCharacteristics and Geological Significance of Siliceous Rocks in ModingFormation of Early Devonian in Eastern Margin of Youjiang Basin. South China Geology, 38(1): 135-146. doi: 10.3969/j.issn.2097-0013.2022.01.010

右江盆地东缘早泥盆世莫丁组硅质岩地球化学特征及地质意义

  • 基金项目:

    中国地质调查局地质调查项目(121201009000150012、DD20211391)

详细信息
    作者简介: 刘飞(1988—),男,工程师,从事区域地质调查工作,E-mail:liufeigeo@foxmail.com
  • 中图分类号: P534.44;P544+.4

GeochemicalCharacteristics and Geological Significance of Siliceous Rocks in ModingFormation of Early Devonian in Eastern Margin of Youjiang Basin

  • 右江盆地东缘南宁地区泥盆系发育大量碎屑岩至碳酸盐岩夹层状硅质岩、硅质团块和硅质结核的海相沉积。层状硅质岩最早出现于早泥盆世莫丁组(D1m),主量、微量和稀土元素研究表明:莫丁组硅质岩具较高的SiO2含量(91.86%-95.57%,均值为94.36%),较低的Al/(Al+Fe+Mn)值(0.05-0.30,均值为0.12),较高的Y/Ho值(24.20-48.79,均值为37.14)和U/Th值(0.90-11.84,均值为5.72),具明显的Ce负异常(δCe=0.32-0.83,均值为0.62)和Eu正异常(δEu=1.15-2.92,均值为1.76)。岩石地球化学综合判别表明,莫丁组硅质岩为热液成因。结合古生物、沉积特征及前人在邻区的研究成果,认为莫丁组硅质岩形成于开阔海盆的沉积环境。区域对比显示,右江盆地早泥盆世以来的海侵由南东向北西发展,海水自南东向北西逐渐变浅,至埃姆斯期晚期海侵范围持续扩大,盆地东缘已发展成为开阔海盆。莫丁组硅质岩的热液成因进一步证实了右江盆地基底在埃姆斯期晚期发生裂解,而热液活动自东向西,自边缘至内部逐渐减弱的规律表明盆地基底的裂解可能受控于盆地边界的深大断裂,在盆地边缘基底断裂围限的区域热液活动更强、裂解程度更高。
  • 加载中
  • [1]

    陈洪德,曾允孚. 1990. 右江沉积盆地的性质及演化讨论[J]. 岩相古地理,10(1):28–37.

    [2]

    丁林,钟大赉. 1995. 滇西昌宁-孟连带古特提斯洋硅质岩稀土元素和铈异常特征[J]. 中国科学:B辑,25(1):93-100.

    [3]

    杜远生,黄宏伟,黄志强,徐亚军,杨江海,黄虎. 2009. 右江盆地晚古生代-三叠纪盆地转换及其构造意义[J]. 地质科技情报,28(6):10–15.

    [4]

    杜远生,徐亚军. 2012. 华南加里东运动初探[J].地质科技情报,31(5):43-49.

    [5]

    杜远生,黄虎,杨江海,黄宏伟,陶平,黄志强,胡丽沙,谢春霞. 2013.晚古生代—中三叠世右江盆地的格局和转换[J].地质论评,59(1):1-11.

    [6]

    黄虎,杨江海,杜远生,黄志强,黄宏伟,郭华. 2012. 右江盆地北缘上二叠统碎屑岩和硅质岩地球化学特征及其地质意义[J]. 地球科学,37(S2):81-96.

    [7]

    邝国敦,赵明特,陶业斌. 1989. 广西六景泥盆系剖面[M]. 武汉:中国地质大学出版社.

    [8]

    刘宝珺,许效松,潘杏南,黄慧琼,徐强. 1993. 中国南方古大陆沉积地壳演化与成矿[M]. 北京:科学出版社.

    [9]

    刘本培. 1986. 华南地区海西-印支阶段构造古地理格局. 见:王鸿祯等 主编.华南地区古大陆边缘构造史[M].武汉: 武汉地质学院出版社,65-77.

    [10]

    秦建华,吴应林,颜仰基,朱忠发. 1996. 南盘江盆地海西-印支期沉积构造演化[J]. 地质学报,70(2):99–107.

    [11]

    邱啸飞,杨红梅,赵小明,卢山松,江拓,段瑞春,刘重芃,彭练红,魏运许. 2019. 扬子克拉通崆岭杂岩新太古代花岗片麻岩成因及其构造意义[J]. 地球科学,44(2):415-426.

    [12]

    宋江涛,林治家,张锦煦,孟杰,陈珍宝. 2021. 湖南隆回县土壤硒元素地球化学特征及其影响因素:以石门-滩头镇为例[J].华南地质,37(1):83-92.

    [13]

    王鸿祯. 1986.中国华南地区地壳构造发展的轮廓. 见:王鸿祯等主编,华南地区古大陆边缘构造史[M]. 武汉:武汉地质学院出版社,1-13.

    [14]

    王新强, 史晓颖. 2008. 桂西北晚古生代乐业孤立碳酸盐岩台地沉积特征与演化阶段[J]. 古地理学报,10(4):329-340.

    [15]

    王卓卓,陈代钊,汪建国. 2007a. 广西南宁地区泥盆纪硅质岩稀土元素地球化学特征及沉积背景[J]. 地质科学,42(3):558-569.

    [16]

    王卓卓,陈代钊,汪建国. 2007b. 广西南宁地区泥盆系硅质岩地球化学特征及沉积环境[J]. 沉积学报,25(2):239-245.

    [17]

    吴浩若. 2000. 重新解释广西运动[J]. 科学通报,45(5): 555–558.

    [18]

    吴浩若. 2003. 晚古生代-三叠纪南盘江海的构造古地理问题[J]. 古地理学报,5(1): 63–76.

    [19]

    曾允孚,刘文均,陈洪德,郑荣才,张锦泉,李孝全,蒋廷操. 1995. 华南右江复合盆地的沉积构造演化[J]. 地质学报,69(2):113-124.

    [20]

    张永利,苗卓伟,巩恩普,张倩. 2021. 右江盆地都安组白云岩成因及其地质意义[J]. 东北大学学报(自然科学版),42(4):550-560.

    [21]

    周倩玉,侯明才,黄虎,吴超伟. 2019. 右江盆地泥盆系硅质岩地球化学特征及地质意义[J]. 成都理工大学学报(自然科学版)46(3):280-289.

    [22]

    周永章,何俊国,杨志军,付伟,杨小强,张澄博,杨海生.2004. 华南热水沉积硅质岩建造及其成矿效应[J]. 地学前缘,11(2):373-377.

    [23]

    中国地质调查局武汉地质调查中心.2019.广西1∶5万五塘幅(F49E007003)、六景幅(F49E007004)、刘圩幅(F49E008003)、峦城镇幅(F49E008004)区域地质调查成果报告[R].武汉:中国地质调查局武汉地质调查中心.

    [24]

    Adachi M, Yamamoto K, Sugisaki R, 1986. Hydrothermal chert and associated siliceous rocks from the northern Pacific their geological significance as indication of ocean ridge activity[J]. Sedimentary Geology, 47(1-2):125-148.

    [25]

    Boström K, Peterson M N A.1969. The origin of aluminum-poor ferromanganoan sediments in areas of high heat flow on the East Pacific Rise[J]. Marine Geology, 7(5): 427-447.

    [26]

    Chen D Z, Qing H R, YanX,LiH. 2006. Hydrothermal venting and basin evolution (Devonian, South China): Constraints from rare earth element geochemistry of chert[J]. Sedimentary Geology, 183(3-4): 203-216.

    [27]

    Girty G H, Ridge D L, Knaack C, Johnson D, Al-Riyami R K. 1996. Provenance and depositional setting of Paleozoic chert and argillite, Sierra Nevada, California[J]. Journal of Sedimentary Research, 66: 107–118.

    [28]

    Hesse, R. 1988. Diagenesis ♯13. Origin of chert: Diagenesis of biogenic siliceous sediments[J]. Geoscience Canada, 15(3): 171-192.

    [29]

    Holser W T. 1997. Evaluation of the application of rare-earth elements to paleoceanography[J]. Palaeogeography, Palaeoclimate, Palaeoecology, 132: 309-323.

    [30]

    Huang H, Du Y S, Huang Z Q, Yang J H, Huang H W, Xie C X, Hu L S. 2013. Depositional chemistry of chert during late Paleozoic from western Guangxi and its implication for the tectonic evolution of the Youjiang Basin[J]. Science China: Earth Sciences, 56(3), 479-493.

    [31]

    Kato Y, Nakao K ,Isozaki Y. 2002. Geochemistry of Late Permian to Early Triassic pelagic cherts from southwest Japan: implications for an oceanic redox change[J]. Chemical Geology, 182(1): 15-34.

    [32]

    Kato Y, Nakamura K.2003. Origin and global tectonic significance of Early Archean cherts from the Marble Bar greenstone belt, Pilbara Craton, Western Australia[J]. Precambrian Research, 125(3): 191-243.

    [33]

    McLennan S M. 1989. Rare earth elements in sedimentary rocks: Influence of provenance and sedimentary processes[J]. Reviews in Mineralogy and Geochemistrry, 21: 169-200.

    [34]

    Murray R W, Buchholtz ten Brink M R, Jones L D, Gerlach D C.1990. Rare earth element as indicators of different marine depositional environments in chert and shale[J]. Geology, 18(3): 268-271.

    [35]

    Murray R W, Buchholtz ten Brink M R, Gerlach D C, Price Russ Ⅲ G , Jones D L. 1991. Rare earth, major, and trace elements in chert from the Franciscan Complex and Monterey Group, California: Assessing REE sources to fine-grained marine sediments[J]. Geochimica et Coschimica Acta, 55(7): 1875-1895.

    [36]

    Murray R W, Jones D L, Buchholtzten Brink M R. 1992. Diagenetic formation of bedded chert: Evidence from chemistry of the chert-shale couplet[J]. Geology, 20(3): 271-274.

    [37]

    Murray R W. 1994. Chemical criteria to identify the depositional environment of chert: General principles and application[J]. Sedimentary Geology, 90: 213-232.

    [38]

    Nozaki Y, Zhang J, Amakawa H. 1997. The fractionation between Y and Ho in the marine environment[J]. Earth and Planetary Science Letters, 148(1-2): 329-340.

    [39]

    Rona P A.1988. Hydrothermal mineralization at oceanic ridges[J]. Canadian Mineralogist, 26:431-465.

    [40]

    Taylor S R, McLennan S M. 1985. The continental crust: Its composition and evolution[J]. The Journal of Geology, 94(4):57-72.

    [41]

    Zong R W, Wang Z Z, Jiang T, Gong Y M. 2016. Late Devonian radiolarian-bearing siliceous rocks from the Karamayophiolitic mélange in western Junggar: Implications for the evolution of the Paleo-Asian Ocean[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 448:266-278.

  • 加载中
计量
  • 文章访问数:  960
  • PDF下载数:  96
  • 施引文献:  0
出版历程
收稿日期:  2021-06-24
修回日期:  2021-09-05

目录