Considerations on Study of Paleo-oceanic Seafloor Rexhalative Hydrothermal Sedimentation and Related Mineral Deposits of the Qinzhou-Hangzhou Metallogenic Belt, South China
-
摘要: 钦杭成矿带是扬子和华夏两个古陆间的巨型构造结合带,古海洋海底喷流热水沉积多层位多类型分布,是研究喷流热水沉积体系的精细时空结构与古陆间构造结合带演化耦合机制的理想场所。本文在评述已有研究基础上,提出了深化钦杭成矿带古海洋喷流热水沉积及其成矿作用研究的建议。从钦杭成矿带同时也是两个古陆结合带的整体视角,分析喷流热水沉积的时空分布特征和发育背景,区分不同沉积建造类型,剖析喷流热水沉积体系的地球化学三维空间结构,揭示喷流热水沉积体系时空结构与古陆间构造结合带演化的耦合机制。通过新设备、新手段和新思路,厘定不同层位和类型喷流热水沉积在矿物学、岩石学、地球化学方面表现出的同一性和多样性,剖析不同喷流热水沉积矿物微组构、微成分,以及B、S、Fe、Cu、Zn同位素信息的精细差异,揭示这些同一性、多样性和信息精细差异对古陆间构造体系及喷流热水沉积体系演化的响应,可望引发喷流热水沉积成矿作用研究的突破,研究结果将深化对喷流热水沉积成矿作用的认识,为海底喷流热水沉积矿床勘查提供指导,提升钦杭带成矿理论研究水平。Abstract: The Qinzhou-Hangzhou Metallogenic Belt (QHMB) is a giant tectonic junction zone between the Yangtze and Cathaysia palaeo-continents. The multi-layered distribution of ancient marine submarine sedimentary exhalative (Sedex) makes it an ideal place to study the precise spatial and temporal structure of the Sedex system and the coupling mechanism of the evolution of the palaeo-continental tectonic junction belt. Based on the review of existing studies, this paper proposes more intensive research on the palaeo-oceanic Sedex and its mineralisation in the QHMB. From the perspective that the QHMB is also the junction belt of two palaeo-terrestrial zones, we analyse the spatial and temporal distribution characteristics and development setting of the Sedex deposits, so to distinguish different types of sedimentary construction, dissect the geochemical three-dimensional spatial structure of the Sedex system, and reveal the coupling mechanism between the spatial and temporal structure of the Sedex system and the evolution of the palaeo-terrestrial tectonic junction zone. With new equipment, new tools and new ideas, the homogeneity and diversity of mineralogy, petrology and geochemistry of different layers and types of the Sedex ore deposits could be identified, and the precise differences in the microstructure and micro-composition of different Sedex ore minerals and the isotopic information of B, S, Fe, Cu and Zn have been analysed to reveal these homogeneity, diversity and precise differences in correspondence with the inter-continent tectonic system and the evolution of the Sedex system. The results would deepen the understanding of the mineralisation of the Sedex system, provide guidance for the exploration of submarine Sedex deposits and improve the mineralisation theory research of the QHMB.
-
-
[1] 曹 亮,胡尚军,段其发,孙 滕,周 云,李江力,李志刚.2019.鄂西长阳锰矿稳定同位素特征及其地质意义[J].华南地质,35(2):226-237.
[2] 陈 骏,陆建军,陈卫锋,王汝成,马东升,朱金初,张文兰,季峻峰.2008.南岭地区钨锡铌钽花岗岩及其成矿作用[J].高校地质学报,14(4):459-473.
[3] 陈先沛,陈多福.1989.广西上泥盆统乳房状燧石的热水沉积地球化学特征[J].地球化学,(1):1-8.
[4] 范宏瑞,陶克捷,谢奕汉,王凯怡.2003.白云鄂博REE-Fe-Nb矿床稀土氟碳酸盐矿物激光拉曼光谱特征及流体包裹体内稀土子矿物的鉴定[J].岩石学报,19(1):169-172.
[5] 郭 强,李子颖,秦明宽,钟大康,张放东,贾 翠,邬 军.2014.内蒙古二连盆地白音查干凹陷热水沉积序列探讨[J].沉积学报,32(5):809-815.
[6] 郭维民,陆建军,蒋少涌,章荣清,漆 亮.2011.安徽铜陵新桥矿床下盘矿化中黄铁矿Re-Os同位素定年:海底喷流沉积成矿的年代学证据[J].科学通报,56(36):3023-3028.
[7] 胡瑞忠,毛景文,范蔚茗,华仁民,毕献武,钟 宏,宋谢炎,陶 琰.2010.华南陆块陆内成矿作用的一些科学问题[J].地学前缘,17(2):13-26.
[8] 蒋少涌.2003.过渡族金属元素同位素分析方法及其地质应用[J].地学前缘,10(2):269-278.
[9] 蒋少涌,赵葵东,姜耀辉,戴宝章.2008.十杭带湘南—桂北段中生代A型花岗岩带成岩成矿特征及成因讨论[J].高校地质学报,14(4):496-509.
[10] 李红中,周永章,杨志军,何俊国,马占武,吕文超,周国富,安燕飞,李 文,梁 锦,王 驰.2010.西秦岭八方山—二里河Pb-Zn矿区硅质岩的微区成分特征及演化[J].地学前缘,17(4):290-298.
[11] 李献华,李武显,何 斌.2012.华南陆块的形成与Rodinia超大陆聚合-裂解——观察、解释与检验[J].矿物岩石地球化学通报,31(6):543-559.
[12] 李晓峰,胡瑞忠,华仁民,马东升,武丽艳,齐有强,彭建堂.2013.华南中生代与同熔型花岗岩有关的铜铅锌多金属矿床时空分布及其岩浆源区特征[J].岩石学报,29(12):4037-4050.
[13] 李延河,蒋少涌,薛春纪.1994.秦岭凤太泥盆系铅锌矿海底喷气成因的硅、氧同位素证据[J].科学通报,39(22):2112.
[14] 梁 锦,周永章,李红中,尹缀缀,周留煜,曾长育,虞鹏鹏.2012.钦-杭结合带斑岩型铜矿的基本地质特征及成因分析[J].岩石学报,28(10):3361-3372.
[15] 刘 飞,严乐佳,李 堃,黄圭成,汤朝阳,邱啸飞.2022.右江盆地东缘早泥盆世莫丁组硅质岩地球化学特征及地质意义[J].华南地质,38(1):135-146.
[16] 毛景文,陈懋弘,袁顺达,郭春丽.2011.华南地区钦杭成矿带地质特征和矿床时空分布规律[J].地质学报,85(5):636-658.
[17] 倪 培,田京辉,朱筱婷,凌洪飞,蒋少涌,顾连兴.2005.江西永平铜矿下盘网脉状矿化的流体包裹体研究[J].岩石学报,21(5):1339–1346.
[18] 邱 振,王清晨.2011.广西来宾中上二叠统硅质岩海底热液成因的地球化学证据[J].中国科学:地球科学,41(5):725-737.
[19] 水 涛.1987.中国东南大陆基底构造格局[J].中国科学(B辑),(4):414-422.
[20] 覃小锋,潘元明,夏 斌,李容森,周府生,胡贵昂,陆国斌.2007.云开地块北缘构造带中变质基性火山岩的地球化学特征及其大地构造意义[J].地球化学,36(3):311-322.
[21] 涂光炽等.1987.中国层控矿床地球化学(第二卷)[M].北京:科学出版社.
[22] 王鹤年,李红艳,王银喜,王海红.1996.广东大降坪块状硫化物矿床形成时代——硅质岩Rb-Sr同位素研究[J].科学通报,41(21):1960-1962.
[23] 王汝成,朱金初,张文兰,谢 磊,于阿朋,车旭东.2008.南岭地区钨锡花岗岩的成矿矿物学:概念与实例[J].高校地质学报,14(4):485-495.
[24] 王忠诚,吴浩若,邝国敦.1995.广西晚古生代硅岩的地球化学及其形成的大地构造环境[J].岩石学报,11(4):449-455.
[25] 王卓卓,施立志,张永生,陈代钊,梁江平.2015.湘桂地区泥盆纪硅岩Rb-Sr、Sm-Nd同位素地球化学特征及构造沉积背景研究[J].沉积学报,33(4):679-686.
[26] 肖应凯,刘卫国,魏海珍.1998.硼同位素测定的进展及存在的问题[J].质谱学报,19(4):65-75.
[27] 徐德明,蔺志永,龙文国,张 鲲,王 磊,周 岱,黄 皓.2012.钦杭成矿带的研究历史和现状[J].华南地质与矿产,28(4):277-289.
[28] 徐德明,蔺志永,骆学全,张 鲲,张雪辉,黄 皓.2015.钦-杭成矿带主要金属矿床成矿系列[J].地学前缘,22(2):7-24.
[29] 薛春纪,赵晓波,莫宣学,陈毓川,董连慧,顾雪祥,张招崇, Nurtaev B, Pak N,李志丹,王新利,张国震,亚夏尔亚力坤,冯博,俎波,刘家瑛.2014.西天山巨型金铜铅锌成矿带构造成矿演化和找矿方向[J].地质学报,88(12):2490-2531.
[30] 杨开辉,侯增谦,莫宣学.1992.“三江”地区火山成因块状硫化物矿床的基本特征与主要类型[J].矿床地质,11(1):35-44+64.
[31] 杨明桂,梅勇文.1997.钦-杭古板块结合带与成矿带的主要特征[J].华南地质与矿产,(3):52-59.
[32] 姚 旭,周 瑶琪,李 素,李 斗.2013.硅质岩与二叠纪硅质沉积事件研究现状及进展[J].地球科学进展,28(11):1189-1200.
[33] 叶美芳.2006.扬子板块东南缘新元古代四堡期岩浆弧:来自浙北花岗质侵入体的年代学、地球化学和Nd-Hf-O同位素证据[D].中国科学院广州地球化学研究所硕士学位论文.
[34] 于津海,楼法生,王丽娟,沈林伟,周雪瑶,张春晖,黄志忠.2014.赣东北弋阳早古生代麻粒岩的发现及其地质意义[J].科学通报,59(35):3508-3516.
[35] 虞鹏鹏,周永章,郑 义,陈炳辉,杨 威,牛 佳,周维丽.2017.钦-杭结合带南段新元古代俯冲作用:来自粤西贵子混杂岩变基性岩年代学和地球化学的证据[J].岩石学报,33(3):739-752.
[36] 曾长育,周永章,郑 义,虞鹏鹏,牛 佳,梁 锦.2015.钦-杭结合带在中生代构造转折事件以前的板块构造机制[J].地学前缘,22(2):54-63.
[37] 中国地质调查局.2010.钦杭成矿带重要矿产勘查部署方案[R].
[38] 周永章,付 伟,杨志军,聂凤军,何俊国,赵元艺,李振清,胡 朋,石贵勇,李 文.2006.雅鲁藏布江缝合带及藏南地区硅质岩微组构特征及其地质意义[J].岩石学报,22(3):742-750.
[39] 周永章.1990.丹池盆地热水成因硅岩的沉积地球化学特征[J].沉积学报,8(3):75-83.
[40] 周永章,何俊国,杨志军,付 伟,杨小强,张澄博,杨海生.2004.华南热水沉积硅质岩建造及其成矿效应[J].地学前缘,11(2):373-377.
[41] 周永章,郑 义,曾长育,梁 锦.2015.关于钦-杭成矿带的若干认识[J].地学前缘,22(2):1-6.
[42] 周永章,曾长育,李红中,安燕飞,梁 锦,吕文超,杨志军,何俊国,沈文杰.2012.钦州湾-杭州湾构造结合带(南段)地质演化和找矿方向[J].地质通报,31(2-3):486-491.
[43] 周永章,李兴远,郑 义,沈文杰,何俊国,虞鹏鹏,牛 佳,曾长育.2017.钦杭结合带成矿地质背景及成矿规律[J].岩石学报,33(3):667-681.
[44] 周永章,牛 佳,林振文,王树功,虞鹏鹏,陈 铄,李景哲,李兴远,梁志鹏,杨 瞳,郑 蕾,张介棠,唐沐阳,郭晓昱,杨 威,刘奇缘.2016.钦杭成矿带西段资源远景调查评价报告[R].中国地质调查局.
[45] 周永章,张国桓,吴勇庆,曾长育,梁 锦,陈 铄,林振文,虞鹏鹏,牛 佳,李兴远,李 森,张春辉,温永辉,张国欢,张轩国.2016.广东庞西垌地区矿产远景调查报告(文地幅、石角幅、塘蓬幅、河唇幅,1:50000)[R].中国地质调查局.
[46] 朱祥坤,王 跃,闫 斌,李 津,董爱国,李志红,孙 剑.2013.非传统稳定同位素地球化学的创建与发展[J].矿物岩石地球化学通报,32(6):651-688.
[47] 祝新友,王京彬,刘慎波,王艳丽,韩 英,甄世民,郭宁宁.2013.广东凡口MVT铅锌矿床成矿年代——来自辉绿岩锆石SHRIMP定年证据[J].地质学报,87(2):167-177.
[48] Allen R L, Tornos F, Peter J M. 2011. A thematic issue on the geological setting and genesis of volcanogenic massive sulfide(VMS)deposits [J]. Mineralium Deposita, 46(5-6): 429-430.
[49] Bennett S A, Rouxel O, Schmidt K, Garbe-Schönberg D, Statham P J, German C R. 2009. Iron isotope fractionation in a buoyant hydrothermal plume, 5°S Mid-Atlantic Ridge [J]. Geochimica et Cosmochimica Acta, 73(19): 5619-5634.
[50] Bonatti, E. 1975. Metallogenesis at Oceanic Spreading Centers [J]. Annual Review of Earth and Planetary Sciences, 3(1): 401-431.
[51] Canadian A S E. 1985. Hydrothermal vents on an axis seamount of the Juan de Fuca ridge [J]. Nature, 313: 212-214.
[52] Gagnevin D, Boyce A J, Barrie C D, Menuge J F, Blakeman R J. 2012. Zn, Fe and S isotope fractionation in a large hydrothermal system [J]. Geochimica et Cosmochimica Acta, 88(1): 183-198.
[53] Gillis K M, Coogan L A, Brant C. 2015. The role of sedimentation history and lithology on fluid flow and reactions in off-axis hydrothermal systems: A perspective from the Troodos ophiolite [J]. Chemical Geology, 414: 84-94.
[54] Heaney P J, Vicenzi E P, De S. 2005. Strange Diamonds: The Mysterious Origins of Carbonado and Framesite [J]. Elements, 1(2): 85-89.
[55] Hutchinson R W.1965. Genesis of Canadian massive sulphides reconsidered by comparison to Cyprus deposits[J]. Canadian Mining and Metallurgical Bulletin, 58(641): 972-986.
[56] Iijima A, Hein J R, Seiver R. 1983. Siliceous deposits in the Pacific region [M]. Amsterdam: Elsevier, 193-194.
[57] Kemkin I V, Kemkina R A. 2015. Depositional Environment of Cherts of the Sikhote-Alin Region (Russia Far East): Evidence from Major, Trace and Rare Earth Elements geochemistry [J]. Journal of Earth Science, 26(2): 259-272.
[58] Larson P B, Cunninghan C G. 1994. Large-scale alteration effects in the Rico paleothermalanomamaly, South Colorado [J]. Economic Geology, 89(8): 1769-1779.
[59] Li Z X, Li X H, Kinny P D, Wang J. 1999. The breakup of Rodinia: did it start with a mantle plume beneath South China [J]? Earth and Planetary Science Letters, 173: 171-181.
[60] Liu T, Liu C D, Yan Z B, Chen Y P. 2013. Meso-Proterozoic Marine Exhalative Mineralization in Qinhang Belt—An Example from Xingyuanchong Copper Deposit in Wanzai, Jiangxi [J]. Advances in Geosciences, 3(2):117-121.
[61] Lobanov K, Yakubchuk A, Creaser R A. 2014. Besshi-Type VMS Deposits of the Rudny Altai (Central Asia) [J]. Economic Geology, 109(5): 1403–1430.
[62] Maréchal C N, Télouk P, Albarède F. 1999. Precise analysis of copper and zinc isotopic compositions by plasma-source mass spectrometry [J]. Chemical Geology, 156(1-4): 251-273.
[63] Marin-Carbonne J, Chaussidon M, Robert F. 2012. Micrometer-scale chemical and isotopic criteria (O and Si) on the origin and history of Precambrian cherts: Implications for paleo-temperature reconstructions [J]. Geochimica et Cosmochimica Acta, 92(1): 129-147.
[64] Marschall H R, Jiang S Y. 2011. Tourmaline Isotopes: No Element Left Behind [J]. Elements, 7(5): 313-319.
[65] Miller A R, Densmore C D, Degens E T, Hathaway J C, Manheim F T, McFarlin P F, Pocklington R, Jokela A. 1966. Hot brines and recent iron deposits in deeps of the Red Sea [J]. Geochimica et Cosmochimica Acta, 30(3): 341-359.
[66] Piercey S J. 2011. The setting, style and role of magmatism in the formation of volcanogenic massive sulfide deposits [J]. Mineralium Deposita, 46(5-6): 449-471.
[67] Rona P A, Scott S D. 1993. A special issue on sea-floor hydrothermal mineralization [J]. Economic Geology, 88(8): 1935-1976.
[68] Sawkins F J. 1976. Masive sulfidc deposits in re1ation to gentectonies [A]. // In: Strong D F (ed.). Metallogeny and Plate Tectonics [C]. Geologica1 Associatlon of Canada, Special Papper, 14: 221-240.
[69] Scott S D. 2013. Modern and fossil sea-floor VMS and SEDEX ore deposit models [C] in Society of Economic Geologists Short Course Volume, Guangzhou, 1.
[70] Shu L S, Jahn B M, Charvet J, Santosh M, Wang B, Xu X S, Jiang S Y. 2014. Early Paleozoic depositional environment and intraplate tectono-magmatism in the Cathaysia Block (South China): Evidence from stratigraphic, structural, geochemical and geochronological investigations [J]. American Journal of Science, 314(1): 154-186.
[71] Spinks S C, Schmid S, Pagés A, Bluett J. 2016. Evidence for SEDEX-style mineralization in the 1.7 Ga Tawallah group, McArthur basin, Australia [J]. Ore Geology Reviews, 76: 122-139.
[72] Xu X S, Suzuki K, Liu L, Wang D Z. 2010. Petrogenesis and tectonic implications of Late Mesozoic granites in the NE Yangtze Block, China: further insights from the Jiuhuashan-Qingyang complex [J]. Geological Magazine, 147(2): 219-232.
[73] Yang Z J, Li H Z, Peng M S, Chen J, lin F and Su Y W. 2008. Study on the HPHT synthetic diamond crystal from Fe-C(H) system and its significance [J]. Chinese Science Bulletin, 53(1) :137-144.
[74] Yu J H, O'Reilly S Y, Wang L J, Griffin W L, Zhou M F, Zhang M, Shu L S. 2010. Components and episodic growth of Precambrian crust in the Cathaysia Block, South China: Evidence from U-Pb ages and Hf isotopes of zircons in Neoproterozoic sediments [J]. Precambrian Research, 181(1-4): 97-114.
[75] Zhou Y Z, Chown E H, Guha J, Lu H Z, Tu G Z. 1994. Hydrothermal origin of Late Proterozoic bedded chert at Gusui, Guangdong, China: Petrologic and geochemical evidence [J]. Sedimentology, 41(3): 605-619.
[76] Zhu X K, O’Nions R K, Guo Y, Reynolds B C. 2000. Secular variation of iron isotopes in North Atlantic deep water [J]. Science, 287(5460): 2000-2002.
-
计量
- 文章访问数: 934
- PDF下载数: 245
- 施引文献: 0