E-Log Evaluation of the Cambrian Shale Play and Identification of Favorable Reservoir in the Yichang Area, Western Hubei Province
-
摘要: 中扬子地区下寒武统是我国页岩气勘探开发的热点层系,页岩测井是评价页岩气储层的重要手段。宜昌地区寒武系处于浅水陆棚相带,页岩中碳酸盐岩组分含量高,大量发育灰质条带和灰岩透镜体,岩性非均质性强,识别优质储层是页岩气评价的基础。本文利用常规测井、特殊测井以及岩心样品分析化验资料,综合分析了宜页1井寒武系水井沱组页岩岩性密度、自然伽马、电阻率、声波时差、补偿中子、核磁共振以及岩性扫描测井特征,获得了富有机质页岩测井的识别方法。研究显示:(1)宜页1井中水井沱组富有机质页岩厚度为68.3m,具有 “五高两低”的地球物理响应特征,水井沱组页岩自上而下,密度测井可划分为指状波动段、中部稳定段、下部低密度段“三段式”特征,电阻率测井可划分为尖峰状高电阻灰质泥岩段、电阻率千欧段,低电阻率含气页岩段;(2)富有机质页岩的密度与TOC呈较好的负相关性,随着深度增加、TOC含量增大,声波时差、补偿中子逐渐增大,元素测井上Si、S含量增加,Ca含量降低;(3)利用孔隙度曲线和U、Th/U等反映TOC的曲线叠合,以及U与RD、DEN、中子、AC的交汇图,可有效区分出优质页岩(TOC>2.0%)、贫有机质页岩和灰质页岩。Abstract: The Lower Cambrian shale in the Middle Yangtze region is a hot spot for shale gas exploration and development in China. The Cambrian Series in the Yichang area, western Hubei province is in the shallow shelf phase zone, with high content of carbonate components in shale, and a large number of ash streaks and ash lenses well developed. Strong non-homogeneous of lithologies means that identification of high-quality reservoirs is fundamental for shale gas evaluation. The litho-density, natural gamma, resistivity, interval transit time, compensated neutron, nuclear magnetic resonance and lithology scanning logging characteristics of the early Cambrian Shuijingtuo shale in Yiye 1 well were comprehensively analyzed using conventional logging, special logging and core sample analysis. The logging identification methods of organic-rich shale were analyzed. The study shows that: (1) the thickness of the organic-rich shale of the Shuijingtuo Formation is 68.3 m, with the geophysical response characteristics of "five highs and two lows". From top to bottom, the density logging can be divided into three sections: finger-like fluctuation section in the upper part, stable section in middle part, and low density section in the lower part. The resistivity logging can also be divided into spiky high resistance of calcareous shale section, resistivity kilo-ohm section, and low resistance of gas-bearing shale section. (2) The density of organic-rich shale has a good negative correlation with TOC content. With the increase of depth, the TOC content, the interval transit time and compensated neutron gradually increase, as well as the Si and S content increases, and Ca content decreases on elemental logs. (3) Using the overlay of porosity logging curves and curves reflecting TOC such as uranium and thorium/uranium, as well as intersection diagram between U and RD, DEN, neutron, AC, the high quality shale (TOC>2.0%), poor organic matter shale and calcareous shale can be separated effectively.
-
-
[1] 蔡全升,刘 安,张保民,张 淼,李培军.2018.宜昌页岩气揭开神秘面纱[J].华南地质,34(2):183-186.
[2] 蔡郁文,张水昌,何 坤,米敬奎,张文龙,王晓梅,王华建,吴朝东.2017.烃源岩中无机矿物对有机质生烃的影响[J].石油实验地质,39(2):253-260.
[3] 邓 宇,曾庆才,陈 胜,管全中,郭晓龙,贺 佩.2019.四川盆地威远地区五峰组-龙马溪组页岩TOC含量地震定量预测方法及应用[J].天然气地球科学,30(3):414-422.
[4] 刘曰武,高大鹏,李 奇,万义钊,段文杰,曾霞光,李明耀,苏业旺,范永波,李世海,鲁晓兵,周东,陈伟民,傅一钦,姜春晖,侯绍继,潘利生,魏小林,胡志明,端祥刚,高树生,沈 瑞,常 进,李晓雁,柳占立,魏宇杰,郑哲敏.2019.页岩气开采中的若干力学前沿问题[J].力学进展,49(1):1-236.
[5] 柳 筠,张梦吟.2021.页岩气田储层含气性测井评价——以四川盆地涪陵页岩气田J区块为例[J].石油实验地质,43(1):128-135.
[6] 罗胜元,陈孝红,李 海,刘 安,王传尚.2019.鄂西宜昌下寒武统水井沱组页岩气聚集条件与含气特征[J].地球科学,44(11):3598-3615.
[7] 吕 嵘,张保民,李 芳,田 巍.2021.湖南省涟源凹陷泥盆纪佘田桥组页岩储层测井评价[J].华南地质,37(3):313-320.
[8] 聂海宽,张金川,李玉喜.2011.四川盆地及其周缘下寒武统页岩气聚集条件[J].石油学报,32(6):959-967.
[9] 舒志国,关红梅,喻 璐,柳 筠.2018.四川盆地焦石坝地区页岩气储层孔隙参数测井评价方法[J].石油实验地质,40(1):38-43.
[10] 田 鹤,曾联波,舒志国,包汉勇,徐 翔,毛 哲,王小垚.2019.页岩横向各向同性地应力预测模型中弹性参数的确定方法[J].地质力学学报,25(2):166-176.
[11] 王 登,余江浩,陈 威,周向辉,张焱林,许露露,周 豹,冷双梁,黄佳琪.2020.鄂西鹤峰地区上二叠统大隆组页岩储层特征及资源潜力[J].华南地质,36(1):9-18.
[12] 王 健,石万忠,舒志国,徐清海,张晓明,徐 壮.2016.富有机质页岩TOC含量的地球物理定量化预测[J].石油地球物理勘探,51(3):596-604+419.
[13] 王 进,包汉勇,陆亚秋,柳 筠,张梦吟.2019.涪陵焦石坝地区页岩气赋存特征定量表征及其主控因素[J].地球科学,44(3):1001-1011.
[14] 王保华,李 浩,陆建林,吕剑虹,王 苗,赵琳洁.2019.陆相页岩层系非泥页岩夹层发育程度定量表征[J].石油实验地质,41(6):879-884.
[15] 王玉满,李新景,陈 波,吴 伟,董大忠,张 鉴,韩 京,马 杰,代 兵,王 浩,蒋 珊.2018.海相页岩有机质炭化的热成熟度下限及勘探风险[J].石油勘探与开发,45(3):385-395.
[16] 夏遵义,马海洋,房 堃.2019.渤海湾盆地沾化凹陷陆相页岩储层岩石力学特征及可压裂性研究[J].石油实验地质,41(1):134-141.
[17] 徐 壮,石万忠,翟刚毅,包书景,张晓明,王 任,王 健,王 超,袁 琪.2017.扬子地区下寒武统与下志留统黑色页岩孔隙度与有机碳关系差异性及原因[J].地球科学,42(7):1223-1234.
[18] 闫建平,蔡进功,赵铭海,郑德顺.2009.运用测井信息研究烃源岩进展及其资源评价意义[J].地球物理学进展,24(1):270-279.
[19] 杨文新,李继庆,赵江艳,黄志红.2018.四川盆地涪陵地区龙马溪组页岩微观孔隙结构定性定量研究[J].石油实验地质,40(1):97-102.
[20] 张晓明,石万忠,舒志国,徐 壮,王 超,袁 琪,徐清海,王 任.2017.涪陵地区页岩含气量计算模型及应用[J].地球科学,42(7):1157-1168.
[21] 周尚文,刘洪林,闫 刚,薛华庆,郭 伟.2016.中国南方海相页岩储层可动流体及T2截止值核磁共振研究[J].石油与天然气地质,37(4):612-616.
[22] 邹才能,董大忠,王社教,李建忠,李新景,王玉满,李登华,程克明.2010.中国页岩气形成机理、地质特征及资源潜力[J].石油勘探与开发,37(6):641-653.
[23] Hammes U, Hamlin H S, Ewing T E. 2011. Geologic analysis of the Upper Jurassic Haynesville Shale in east Texas and west Louisiana [J]. AAPG Bulletin, 95(10): 1643-1666.
[24] Ross D J K, Bustin R M. 2008. Characterizing the shale gas resource potential of Devonian–Mississippian strata in the Western Canada sedimentary basin: Application of an integrated formation evaluation [J]. AAPG Bulletin, 92(1): 87-125.
[25] Tribovillard N, Algeo T J, Lyons T, Riboulleau A. 2006. Trace metals as paleoredox and paleoproductivity proxies: An update [J]. Chemical Geology, 232(1-2): 12-32.
[26] Walters C C, Kliewer C E, Awwiller D N, Rudnicki M D, Passey Q R, Lin M W. 2014. Influence of turbostratic carbon nanostructures on electrical conductivity in shales[J]. International Journal of Coal Geology, 122:105-109.
[27] Zheng Y, Anderson R F, van Geen A, Fleisher M Q. 2002. Preservation of particulate non-lithogenic uranium in marine sediments [J]. Geochimica et Cosmochimica Acta, 66(17): 3085-3092.
[28] Zhao H, Givens N B, Curtis B. 2007. Thermal maturity of the Barnett Shale determined from well-Log analysis [J]. AAPG Bulletin, 91(4): 535-549.
[29] Zou C N, Zhu R K, Tao S Z, Hou L H, Yuan X J, Song Y, Niu J Y, Dong D Z, Liu S B, Jiang L Z, Wang S J, Zhang G S. 2013. Unconventional petroleum geology [M]. Elsevier, 149-184.
-
计量
- 文章访问数: 906
- PDF下载数: 41
- 施引文献: 0