南岭成矿带大义山藤山坳锡矿床花岗岩成因及锡成矿作用的指示

张遵遵, 蔺东永, 于玉帅, 卢友月, 付建明, 李剑锋, 秦拯纬, 马丽艳, 宁勇云, 张吉梼. 2022. 南岭成矿带大义山藤山坳锡矿床花岗岩成因及锡成矿作用的指示. 华南地质, 38(3): 441-458. doi: 10.3969/j.issn.2097-0013.2022.03.007
引用本文: 张遵遵, 蔺东永, 于玉帅, 卢友月, 付建明, 李剑锋, 秦拯纬, 马丽艳, 宁勇云, 张吉梼. 2022. 南岭成矿带大义山藤山坳锡矿床花岗岩成因及锡成矿作用的指示. 华南地质, 38(3): 441-458. doi: 10.3969/j.issn.2097-0013.2022.03.007
ZHANGZun-Zun, LINDong-Yong, YUYu-Shuai, LUYou-Yue, FUJian-Ming, LIJian-Feng, QINZheng-Wei, MALi-Yan, NINGYong-Yun, ZHANGJi-Tao. 2022. Implications to the Petrogenesis and Sn Mineralization of the Granite in the Tengshan’ao Sn deposit, the Nanling Metallogenic Belt. South China Geology, 38(3): 441-458. doi: 10.3969/j.issn.2097-0013.2022.03.007
Citation: ZHANGZun-Zun, LINDong-Yong, YUYu-Shuai, LUYou-Yue, FUJian-Ming, LIJian-Feng, QINZheng-Wei, MALi-Yan, NINGYong-Yun, ZHANGJi-Tao. 2022. Implications to the Petrogenesis and Sn Mineralization of the Granite in the Tengshan’ao Sn deposit, the Nanling Metallogenic Belt. South China Geology, 38(3): 441-458. doi: 10.3969/j.issn.2097-0013.2022.03.007

南岭成矿带大义山藤山坳锡矿床花岗岩成因及锡成矿作用的指示

  • 基金项目:

    中国地质调查局花岗岩成岩成矿地质研究中心开放基金课题(PMGR202115)、国家重点研发计划(2018YFA0702700)、中国地质调查局项目(DD20190154、DD20221689)

详细信息
    作者简介: 张遵遵(1984—),男,硕士,高级工程师,主要从事矿产地质调查与研究工作,E-mail:389712477@qq.com
  • 中图分类号: P618.44;P611

Implications to the Petrogenesis and Sn Mineralization of the Granite in the Tengshan’ao Sn deposit, the Nanling Metallogenic Belt

  • 藤山坳锡矿床位于南岭成矿带大义山复式花岗岩体南部,具有大型规模潜力。在详细野外地质调查的基础上,本文以矿区分布的花岗岩为研究对象,进行了系统的岩相学、岩石地球化学、高精度LA-ICP-MS锆石U-Pb定年和Lu-Hf同位素测试。定年结果显示,细粒二云母二长花岗岩锆石U-Pb年龄为146.2±1.6 Ma(MSWD=2.2,n=18),与矿区细粒含斑二云母二长花岗岩年龄(158.2±1.2 Ma)相差约12 Ma,指示区内至少存在两期岩浆活动。矿区花岗岩富Si、Al、K,贫Ca、Mg,稀土元素具有四分组效应,ΣREE低(平均91.0×10-6)、δEu值极低(平均0.03),以及高FeOT/MgO值(平均16.8),10000×Ga/Al值(3.3~4.8)>2.6等特征,总体显示为高分异的铝质A型花岗岩。岩石微量元素特征及部分锆石εHf(t)值(-3.88~6.54)为正值等表明成岩岩浆具有壳幔物质混合来源的特点,形成于板内伸展构造环境,具有较好的锡多金属成矿潜力。
  • 加载中
  • [1]

    陈 骏,陆建军,陈卫锋,王汝成,马东升,朱金初,张文兰,季峻峰.2008.南岭地区钨锡铌钽花岗岩及其成矿作用[J].高校地质学报,14(4):459-473.

    [2]

    陈 骏,王汝成,朱金初,陆建军,马东升.2014.南岭多时代花岗岩的钨锡成矿作用[J].中国科学:地球科学,44(1):111-121.

    [3]

    程顺波,付建明,马丽艳,卢友月.2014.南岭地区成钨、成锡花岗岩组合的几个判别标志[J].华南地质与矿产,30(4):352-360.

    [4]

    董超阁. 2018. 湖南锡田锡钨矿床和邓阜仙钨矿床成岩成矿年代学及动力学研究[D].中国科学院大学(中国科学院广州地球化学研究所)博士学位论文,93-111.

    [5]

    付建明,陈希清,马丽艳,程顺波.2010.南岭成矿带锡多金属找矿成果及找矿方向[J].矿床地质,29(S1):181-182.

    [6]

    付建明,程顺波,卢友月,马丽艳.2012.南岭地区钨锡多金属矿成矿规律及找矿方向[J].地球科学进展,27(S1):162-164.

    [7]

    付建明,马丽艳,程顺波,卢友月.2013.南岭地区锡(钨)矿成矿规律及找矿[J].高校地质学报,19(2):202-212.

    [8]

    贺文华. 2011.湖南大义山地区锡多金属矿成矿模式初探[J].华南地质与矿产,27(1):14-21.

    [9]

    侯可军,李延河,邹天人,曲晓明,石玉若,谢桂青.2007. LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用[J].岩石学报,23(10):2595-2604.

    [10]

    胡 建,邱检生,王德滋,王汝成,张晓琳.2005.中国东南沿海与南岭内陆A型花岗岩的对比及其构造意义[J].高校地质学报,11(3):404-414.

    [11]

    华仁民,陈培荣,张文兰,陆建军.2005.论华南地区中生代3次大规模成矿作用[J].矿床地质, 24(2):99-107.

    [12]

    蒋少涌,赵葵东,姜 海,苏慧敏,熊索菲,熊伊曲,徐耀明,章 伟,朱律运.2020.中国钨锡矿床时空分布规律、地质特征与成矿机制研究进展[J].科学通报,65(33):3730-3745.

    [13]

    孔 华,费利东,钟江临,王 高,刘士杰,周伟平,全铁军.2014.湖南新生矿区花岗岩的锆石U-Pb年龄、Hf同位素特征及地质意义[J].中国有色金属学报,24(1):229-238.

    [14]

    李 勇,张岳桥,苏金宝,李建华,董树文.2015.湖南大义山、塔山岩体锆石U-Pb年龄及其构造意义[J].地球学报,36(3):303-312.

    [15]

    李剑锋,卢友月,张遵遵,付建明,秦拯纬.2022.南岭大义山岩体研究与找矿进展[J/OL].地球科学. https://kns.cnki.net/kcms/detail/42.1874.P.20220110.1521.010.html

    [16]

    刘铁生.2002.大义山矿田岩体型锡矿地质特征及矿床成因[J].中国地质,29(4):411-415.

    [17]

    路远发,李文霞,2021a.花岗岩类自然矿物岩石化学换算及程序设计[J].华南地质,37(4):445-457.

    [18]

    路远发,李文霞,2021b.Pb-Sr-Nd-Hf同位素参数计算及程序设计[J].华南地质,37(2):233-245.

    [19]

    马丽艳,刘树生,付建明,程顺波,卢友月,梅玉萍.2016.湖南塔山、阳明山花岗岩的岩石成因:来自锆石U-Pb年龄、地球化学及Sr-Nd同位素证据[J].地质学报,90(2):284-303.

    [20]

    毛景文,谢桂青,程彦博,陈毓川.2009.华南地区中生代主要金属矿床模型[J].地质论评,55(3):347-354.

    [21]

    毛景文,谢桂青,郭春丽,陈毓川.2007.南岭地区大规模钨锡多金属成矿作用:成矿时限及地球动力学背景[J].岩石学报, 23(10):2329-2338.

    [22]

    毛景文,谢桂青,袁顺达,刘 鹏,孟旭阳,周振华,郑 伟.2018.环太平洋成矿带斑岩-矽卡岩型铜矿和与花岗岩有关的锡多金属矿研究现状与展望[J].岩石学报,34(9):2501-2517.

    [23]

    彭建堂,胡瑞忠,袁顺达,毕献武,沈能平.2008.湘南中生代花岗质岩石成岩成矿的时限[J].地质论评,54(5):617-625.

    [24]

    秦拯纬,付建明,邢光福,程顺波,卢友月,祝颖雪.2022.南岭成矿带中-晚侏罗世成钨、成锡、成铅锌(铜)花岗岩的差异性研究[J].中国地质,49(2):518-541.

    [25]

    舒良树,周新民,邓 平,余心起.2006.南岭构造带的基本地质特征[J].地质论评,52(2):251-265.

    [26]

    隋清霖,祝红丽,孙赛军,陈登辉,赵晓健,王钊飞.2020.锡的地球化学性质与华南晚白垩世锡矿成因[J].岩石学报,36(1):23-34.

    [27]

    覃明飞,许少伟,李庚华.2019.广西栗木矿田水溪庙锡多金属矿床地质特征[J].现代矿业,35(5):109-112.

    [28]

    唐朝晖.2019.大义山锡矿田矿床地质特征及矿床成因[J].资源信息与工程,34(4):23-24+26.

    [29]

    王成辉,王登红,陈 晨,刘善宝,陈振宇,孙 艳,赵晨辉,曹圣华,凡秀君.2019.九岭式狮子岭岩体型稀有金属成矿作用研究进展及其找矿意义[J].地质学报,93(6):1359-1373.

    [30]

    王登红,陈振宇,黄 凡,王成辉,赵 芝,陈郑辉,赵 正,刘新星.2014.南岭岩浆岩成矿专属性及相关问题探讨[J].大地构造与成矿学,38(2):230-238.

    [31]

    王正军,谢 磊,王汝成,朱金初,车旭东,赵 旭.2018.一种特殊类型的云英岩:湘南香花岭地区癞子岭云英岩成岩成矿特征[J].高校地质学报,24(4):467-480.

    [32]

    伍光英,潘仲芳,李金冬,肖庆辉,车勤建.2005.湘南大义山花岗岩地质地球化学特征及其与成矿的关系[J].中国地质,32(3):434-442.

    [33]

    伍光英,彭和求,贾宝华.2000.湘南大义山岩体地质特征及其侵位机制分析[J].华南地质与矿产, (3):1-7.

    [34]

    夏金龙,黄圭成,定 立,丁丽雪,陈希清,季文兵. 2021.南岭地区诸广山复式岩体年代格架研究[J].华南地质, 37(3):280-297.

    [35]

    阳杰华,刘 亮,刘 佳,2017.华南中生代大花岗岩省成岩成矿作用研究进展与展望[J].矿物学报,37(6):791-800.

    [36]

    袁顺达.2017.南岭钨锡成矿作用几个关键科学问题及其对区域找矿勘查的启示[J].矿物岩石地球化学通报,36(5):736-749+696.

    [37]

    曾志方.2013.湖南大义山锡矿田构造控矿作用与成矿机理研究[D].中国地质大学(武汉)博士学位论文,50.

    [38]

    张晓军,罗 华,吴志华,范先旺,熊 俊,杨 杰,牟金燚.2014.湖南大义山矿田白沙子岭锡矿床Rb-Sr同位素等时线年龄及其地质意义[J].地球科学(中国地质大学学报),39(10):1422-1432.

    [39]

    赵增霞,徐兆文,左昌虎,陆建军,王汝成,缪柏虎,路 睿.2017.湖南桂阳大义山南体(太坪山单元)花岗岩形成时代及物质来源探讨[J].地质论评,63(2):395-412.

    [40]

    赵振华,包志伟,张伯友,熊小林.2000.柿竹园超大型钨多金属矿床形成的壳幔相互作用背景[J].中国科学:地球科学,30(S1):161-168.

    [41]

    赵振华,包志伟,张伯友.1998.湘南中生代玄武岩类地球化学特征[J].中国科学:地球科学,28(S2):7-14.

    [42]

    周厚祥,杨贵花,蒋中和,陈强春.2005.大义山锡矿田矿床地质特征及矿床成因[J].华南地质与矿产, (2):87-94.

    [43]

    朱金初,陈 骏,王汝成,陆建军,谢 磊.2008.南岭中西段燕山早期北东向含锡钨A型花岗岩带[J].高校地质学报,14(4):474-484.

    [44]

    Ballard J R, Palin M J, Campbell I H. 2002. Relative oxidation states of magmas inferred from Ce (IV)/Ce(III) in zircon: application to porphyry copper deposits of northern Chile [J]. Contribution to Mineralogy and Petrology, 144: 347-364.

    [45]

    Ballouard C, Poujol M, Boulvais P, Branquet Y, Tart`ese R, Vigneresse J L. 2016. Nb-Ta fractionation in peraluminous granites: A marker of the magmatic-hydrothermal transition [J]. Geology, 44 (3), 231-234.

    [46]

    Chen J, Halls C, Stanley C J. 1992. Tin-bearing skarns of South China: Geological setting and mineralogy [J]. Ore Geology Reviews, 7(3):225-248.

    [47]

    Eugster H P, Wones D R. 1962. Stability relations of the ferruginous biotite, Annite [J]. Journal of Petrology, 3(1):82-125.

    [48]

    Guo J, Lu Y Y, Fu J M, Ning Y Y, Zhang Z Z. 2019. Geology and Geochronology of the Maozaishan Sn Deposit, Hunan Province: Constraints from Zircon U-Pb and Muscovite Ar-Ar Dating [J]. Minerals, 9(12):773-789.

    [49]

    Hu X Y, Bi X W, Hu R Z, Shang L B, Fan W L. 2008. Experimental study on tin partition between granitic silicate melt and coexisting aqueous fluid [J]. Geochemical Journal, 42(2):141-150.

    [50]

    Kemp A I S, Hawkesworth C J, Foster G L, Paterson B A, Woodhead J D, Hergt J M, Gray C M, Whitehouse M J. 2007. Magmatic and crustal differentiation history of granitic rocks from Hf-O isotopes in zircon [J]. Science, 315:980-983.

    [51]

    King P L, White A J R, Chappell B W, Allen C M. 1997.Characterization and origin of aluminous A-type granites from the Lachlan fold belt, southeastern Australia [J]. Journal of Petrology, 38(3): 371–391.

    [52]

    Li Z X, Li X H. 2007. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: a flat-slab subduction model [J]. Geology, 35 (2): 179-182.

    [53]

    Liu Y S, Gao S, Hu Z C, Gao C G, Zong K Q, Wang D B. 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths[J]. Journal of Petrology, 51: 537-571.

    [54]

    Lu Y Y, Cao J Y, Fu J M, Yang X Y, Yang Q Z, Guo J, Cheng S B, Qin Z W, Zhang Z Z, Zhang T Y, Xia J, Zhao Z. 2021.Petrogenesis of the granite related to the Dashunlong Sn polymetallic deposit, Dayishan ore field, South China [J]. Ore Geology Reviews, 139:104478.

    [55]

    Lu Y Y, Li J F, Cao J Y, Fu J M, Cheng S B, Qin Z W, Ma L Y, Feng J P, Zhang Z Z, Chen X Q. 2022. Geochronology and geochemistry of the Late Jurassic Wujiaping Sn deposit, Dayishan ore field, South China: Implications to the petrogenesis and Sn mineralization [J]. Solid Earth Sciences, 7(1):72-86.

    [56]

    Mao J W, Cheng Y B, Chen M H, Franco P. 2013. Major Types and Time-space Distribution of Mesozoic ore Deposits in South China and their Geodynamic Settings [J]. Mineralium Deposita, 48(3):267-294.

    [57]

    Pearce J. 1996. Sources and Settings of Granitic Rocks [J]. Episodes, 19(4):120-125.

    [58]

    Schmidt C. 2018. Formation of hydrothermal tin deposits: raman spectroscopic evidence for an important role of aqueous sn (IV) species [J]. Geochimica et Cosmochimica Acta, 220:499-511.

    [59]

    Sun H R, Zhao Z, Yan G S, Lü Z C, Huang Z L, Yu X F. 2018. Geological and Geochronological Constraints on the Formation of the Jurassic Maozaishan Sn Deposit, Dayishan Orefield, South China [J]. Ore Geology Reviews, 94:212-224.

    [60]

    Sun S S, Mcdonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes [J]. Geological Society London Special Publications, 42(1): 313-345.

    [61]

    Taylor S R, McLennan S M. 1985. The Continental Crust: Its Composition and Evolution [J]. The Journal of Geology, 94(4):57-72.

    [62]

    Thomas R, Förster H J, Rickers K, Webster J D. 2005. Formation of extremely F-rich hydrous melt fractions and hydrothermal fluids during differentiation of highly evolved tin-granite magmas: a melt/fluid-inclusion study [J]. Contribution to Mineralogy Petrology,148(5): 582-601.

    [63]

    Trail D, Watson E B, Tailby N D. 2012. Ce and Eu anomalies in zircon as proxies for the oxidation state of magmas[J]. GeochimIca et Cosmochimica Acta, 97:70-87.

    [64]

    Wang D H, Huang F, Wang Y, He H H, Li X M, Liu X X, Sheng J F, Liang T. 2020. Regional Metallogeny of Tungsten-tin-polymetallic Deposits in Nanling Region, South China [J]. Ore Geology Reviews, 120:1-24.

    [65]

    Whalen J B, Currie K L, Chappell B W.1987. A-type granites: geochemical characteristics, discrimination and petrogenesis [J]. Contributions to Mineralogy and Petrology, 95:407-419.

    [66]

    Yu Y S, Zhou Y, Dai P Y, Xie F, Bao B, Liu C P. 2022. Triassic tungsten mineralization in Nanling metallogenic belt: a case study of the Zanshi tungsten deposit in the Yajiangqiao area, eastern Hunan Province, China [J]. Ore Geology Reviews, https://doi.org/10.1016/j.oregeorev.2022.104710.

    [67]

    Zhang Z Z, Ning Y Y, Lu Y Y, Cao J Y, Fu J M, Zhao Z, Guo J, Ma L Y, Qin Z W, Li J F. 2021. Geological characteristics and metallogenic age of Tengshan’ao Sn deposit in Dayishan of South Hunan and its prospecting significance [J]. Solid Earth Sciences, 6: 37-49.

    [68]

    Zhao Z, Yang X Y, Li W Y, Zhang T Y, Lu Y Y, Zhang Z Z. 2022. Petrogenesis of the granite related to the Baishaziling Sn deposit, Dayishan ore field, Southern China [J]. Geochemistry, https://doi.org/10.1016/j.chemer.2022.125873.

    [69]

    Zhou D, Sun Z, Chen H Z, Xu H H, Wang W Y, Pang X, Cai D S, Hu D K. 2008. Mesozoic paleogeography and tectonic evolution of South China Sea and adjacent areas in the context of Tethyan and Paleo-Pacific interconnections [J]. Island Arc, 17(2):186-207.

    [70]

    Zhou X M, Sun T, Shen W Z, Shu L S, Niu Y L. 2006. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: A response to tectonic evolution[J]. Episodes, 29(1):26-33.

    [71]

    Zhou X M, Li W X. 2000. Origin of Late Mesozoic igneous rocks in Southeastern China: implications for lithosphere subduction and underplating of mafic magmas [J]. Tectonophysics, 326: 269-287.

  • 加载中
计量
  • 文章访问数:  1911
  • PDF下载数:  134
  • 施引文献:  0
出版历程
收稿日期:  2022-04-09
修回日期:  2022-07-11

目录