Redox Environment and Its Significance for Phosphorus Formation of Ediacaran Doushantuo Formation in Zhangcunping Area, Yichang, Hubei Province: Constraints From Trace Elements
-
摘要: 通过分析湖北宜昌樟村坪万家沟剖面埃迪卡拉系陡山沱组二段岩石样品的主量、微量元素,对该区域埃迪卡拉纪海洋的氧化还原状态进行了制约。氧化还原敏感元素的富集系数以及U/Th比值存在着明显的演化趋势,这些趋势显示陡山沱组二段沉积时期海水至少经历了3次含氧量明显减少的过程,并与磷含量显著增加相对应,分别沉积磷质条带、磷块岩和硅质结核白云岩。樟村坪地区下磷矿层沉积于水体由氧化快速转变为缺氧的环境之中。本文研究表明水体的氧化还原状态是影响埃迪卡拉纪成磷的关键因素之一。Abstract: The major and trace elements of the samples from the second member of Ediacaran Doushantuo Formation from the Wanjiagou section in the Zhangcunping area of western Hubei (South China) have been analyzed, so to constrain redox conditions of the Ediacaran ocean. The enrichment factor of redox-sensitive elements and U/Th ratio values show an obvious evolutionary trend, indicating that the seawater has experienced at least three obvious oxygen reduction processes during the sedimentary stage of the second member of Doushantuo Formation, and corresponding to the significant increase of phosphorus content, which leads to the deposited phosphorus bands, the phosphorite and the siliceous nodular dolostone respectively. The Lower Phosphorite Layer in the Zhangcunping area was deposited in the environment of rapid change from oxidation to reduction. This study shows that the redox state of seawater is one of the key factors influencing the Ediacaran phosphate-forming event.
-
Key words:
- trace element /
- redox /
- Ediacaran /
- Doushantuo Formation /
- phosphorite /
- Yichang /
- Zhangcunping
-
-
[1] 安志辉,童金南,叶 琴,田 力,赵小明,刘圣德,牟宗玉.2018.湖北宜昌樟村坪地区陡山沱组地层划分与对比[J].地球科学, 43(7):2206-2221.
[2] 常华进,储雪蕾,冯连君,黄 晶,张启锐.2009.氧化还原敏感微量元素对古海洋沉积环境的指示意义[J].地质论评,55(1): 91-99.
[3] 陈 翔,袁训来,周传明,陈 哲.2018.湖北三峡地区埃迪卡拉系灯影组“蝌蚪状”遗迹化石[J].古生物学报,57(1):1-10.
[4] 陈寿铭,尹崇玉,刘鹏举,高林志,唐 烽,王自强.2010.湖北宜昌樟村坪埃迪卡拉系陡山沱组硅磷质结核中的微体化石[J].地质学报,84(1):70-77.
[5] 陈孝红,张国涛,胡 亚.2016.鄂西宜昌地区埃迪卡拉系陡山沱组页岩沉积环境及其页岩气地质意义[J].华南地质与矿产,32(2): 106-116.
[6] 纪秋梅,吕 苗,张俊明,胡春林,朱茂炎.2019.埃迪卡拉纪全球成磷事件沉积地球化学模型探讨:以扬子板块不同相区陡山沱组含磷岩层研究为实例[J].高校地质学报,25(1):68-80.
[7] 李小霞.2014.峡东似人山-丁白剖面陡山沱组碳同位素变化及其指示意义[D].中国地质大学(北京)硕士学位论文.
[8] 刘鹏举,尹崇玉,高林志,唐 烽,陈寿铭.2009.湖北宜昌樟村坪埃迪卡拉系陡山沱组微体化石新材料及锆石SHRIMP U-Pb年龄[J].科学通报,54(6):774-780.
[9] 密文天,李德亮,范 昱.2011.湖北宜昌白果园陡山沱组磷块岩地球化学特征研究[J].地质与勘探,47(6):982-993.
[10] 唐 烽,尹崇玉,柳永清,王自强,刘鹏举,高林志.2005.峡东震旦系陡山沱组宏体化石的新发现[J].科学通报,50(23):2632-2637.
[11] 田兴磊,雒昆利,王少彬,倪润祥.2014.长江三峡地区成冰纪—埃迪卡拉纪转换时期微量元素和稀土元素地球化学特征[J].古地理学报,16(4):483-502.
[12] 闫 斌,朱祥坤,张飞飞,唐索寒.2014.峡东地区埃迪卡拉系黑色页岩的微量元素和Fe同位素特征及其古环境意义[J].地质学报,88(8):1603-1615.
[13] 杨 凡,秦树健,丁伟铭,徐祎贺,沈 冰.2018.湖北峡东地区灯影组石板滩段宏体藻类化石新发现[J].北京大学学报(自然科学版), 54(3):563-572.
[14] 杨爱华,朱茂炎,张俊明,赵方臣,吕 苗.2015.扬子板块埃迪卡拉系(震旦系)陡山沱组层序地层划分与对比[J].古地理学报,17(1):1-20.
[15] 杨刚忠,廖宗明,李方会,刘圣德.2008.宜昌磷矿北部地区中磷层(Ph2)地质特征及富矿带展布[J].资源环境与工程,22(4):406-411.
[16] 叶 琴,童金南,安志辉,田 力,赵小明,朱士兴.2015.湖北宜昌樟村坪埃迪卡拉纪陡山沱组磷酸盐化微体化石组合[J].古生物学报,54(1):43-65.
[17] 叶 琴.2018.华南神农架-黄陵地区晚新元古代宏体藻类化石研究[D].中国地质大学(武汉)博士学位论文.
[18] 赵小明,安志辉,邱啸飞,胡正祥.2022.扬子克拉通北缘神农架-崆岭地区中-新元古代地层厘定—兼论“神农架群底界”[J].华南地质,38(1):46-55.
[19] 郑文忠,东野脉兴,胡珞兰.1992.鄂西震旦纪陡山沱组磷块岩稀土元素地球化学[J].地质论评,38(4):352-359.
[20] 郑文忠,东野脉兴.1994.兴神磷矿含磷岩系地球化学特征与沉积环境分析[J].化工地质,16(2):80-85.
[21] 周传明,解古巍,肖书海.2005.湖北宜昌樟村坪陡山沱组微体化石新资料[J].微体古生物学报,22(3):217-224.
[22] 周 鹏,张保民,陈孝红.2017.湖北宜昌樟村坪埃迪卡拉系陡山沱组C同位素变化及成因[J].地质通报,36(5):780-791.
[23] Chen Z, Zhou C M, Meyer M, Xiang K, Schiffbauer J D, Yuan X L, Xiao S H. 2013. Trace fossil evidence for Ediacaran bilaterian animals with complex behaviors[J]. Precambrian Research, 224: 690-701.
[24] Chen Z, Zhou C M, Xiao S H, Wang W, Guan C G, Hua H, Yuan X L. 2014. New Ediacara fossils preserved in marine limestone and their ecological implications[J]. Scientific reports, 4: 4180.
[25] Filippelli G M. 2011. Phosphate rock formation and marine phosphorus geochemistry: The deep time perspective[J]. Chemosphere, 84(6): 759-766.
[26] Gromet L P, Dymek R F, Haskin L A, Korotev R L. 1984. The “North American shale composite”: Its compilation, major and trace element characteristics[J]. Geochimica et Cosmochimica Acta, 48(12): 2469-2482.
[27] Jiang G Q, Shi X Y, Zhang S H, Wang Y, Xiao S H. 2011. Stratigraphy and paleogeography of the Ediacaran Doushantuo Formation (ca. 635–551 Ma) in South China[J]. Gondwana Research, 19(4): 831-849.
[28] Jiang G Q, Kennedy M J, Christie-Blick N. 2003. Stable isotopic evidence for methane seeps in Neoproterozoic postglacial cap carbonates[J]. Nature, 426(6968): 822-826.
[29] Jones B, Manning D A C. 1994. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones[J]. Chemical Geology, 111: 111-129.
[30] Kendall B, Komiya T, Lyons T W, Bates S M, Gordon G W, Romaniello S J, Jiang G Q, Creaser R A, Xiao S H, McFadden K, Sawaki Y, Tahata M, Shu D G, Han J, Li Y, Chu X L, Anbar A D. 2015. Uranium and molybdenum isotope evidence for an episode of widespread ocean oxygenation during the late Ediacaran Period[J]. Geochinica et Cosmochimica Acta, 156: 173-193.
[31] Li C, Love G D, Lyons T W, Fike D A, Sessions A L, Chu X L. 2010. A Stratified Redox Model for the Ediacaran Ocean[J]. Science, 328(5974): 80-83.
[32] Liu P J, Yin C Y, Chen S M, Tang F, Gao L Z. 2013. The biostratigraphic succession of acanthomorphic acritarchs of the Ediacaran Doushantuo Formation in the Yangtze Gorges area, South China and its biostratigraphic correlation with Australia[J].Precambrian Research, 225: 29-43.
[33] McFadden K A, Xiao S H, Zhou C M, Kowalewski M. 2009. Quantitative evaluation of the biostratigraphic distribution of acanthomorphic acritarchs in the Ediacaran Doushantuo Formation in the Yangtze Gorges area, South China [J].Precambrian Research, 173: 170-190.
[34] Ouyang Q, Zhou C M, Xiao S H, Chen Z, Shao Y F. 2019. Acanthomorphic acritarchs from the Ediacaran Doushantuo Formation at Zhangcunping in South China, with implications for the evolution of early Ediacaran eukaryotes[J]. Precambrian Research, 320: 171-192.
[35] Planavsky N J, Rouxel O J, Bekker A, Lalonde S V, Konhauser K O, Reinhard C T, Lyons T W. 2010. The evolution of the marine phosphate reservoir[J]. Nature, 467(7319): 1088-1090.
[36] She Z B, Strother P, McMahon G, Nittler L R, Wang J H, Zhang J H, Sang L K, Ma C Q, Papineau D. 2013. Terminal Proterozoic cyanobacterial blooms and phosphogenesis documented by the Doushantuo granular phosphorites I: In situ micro-analysis of textures and composition[J]. Precambrian Research, 235: 20-35.
[37] Tian L, Song H Y, Ye Q, Hu J, An Z H, Zhao X M, Bottjer D, Tong J N. 2020. Recurrent anoxia recorded in shallow marine facies at Zhangcunping (western Hubei, China) throughout the Ediacaran to earliest Cambrian[J]. Precambrian Research, 340: 105617.
[38] Tribovillard N, Algeo T J, Lyons T, Riboulleau A. 2006. Trace metals as paleoredox and paleoproductivity proxies: An update[J]. Chemical Geology, 232(1-2): 12-32.
[39] Wang Z, Wang J S, Suess E, Wang G Z, Chen C, Xiao S H. 2017. Silicified glendonites in the Ediacaran Doushantuo Formation (South China) and their potential paleoclimatic implications[J]. Geology, 45(2): 115-118.
[40] Xin H, Jiang S Y, Yang J H, Wu H P, Pi D H. 2015. Rare earth element and Sr-Nd isotope geochemistry of phosphatic rocks in Neoproterozoic Ediacaran Doushantuo Formation in Zhangcunping section from western Hubei Province, South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 440: 712-724.
[41] Zhu M Y, Zhang J M, Yang A H. 2007. Integrated Ediacaran (Sinian) chronostratigraphy of South China [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 254(1-2): 7-61.
-
计量
- 文章访问数: 1041
- PDF下载数: 42
- 施引文献: 0