Constraint of Cretaceous to Paleogene Terrestrial Basins in the Nanling Area on Climate Changes and Tectonic Transition
-
摘要: 南岭地区白垩纪至古近纪陆相盆地对华南晚中生代-新生代早期气候与构造具有重要制约意义。通过综述盆地的分布规律、沉积时代、沉积厚度、物质来源和构造特征,本文讨论了华南晚白垩世-古近纪气候变化和构造域转换。以3条近E-W向花岗岩带为界,南岭地区白垩纪至古近纪陆相盆地可以划分为北部、中部和南部三个亚带。中部亚带以晚白垩世至古近纪盆地为主,盆地规模与沉积厚度变化大。以NNE向郴州-临武断裂为界,南岭地区北部亚带和南部亚带均可以划分为东西两段,其西段以规模较大的白垩纪至古近纪盆地为主,而东段主要发育晚白垩世至古近纪盆地。巨厚的红层说明白垩纪至古近纪以湿热环境为主。但晚白垩世中期风成沉积和蒸发岩却指示短期的干旱性沙漠气候,是东南沿海NE-SW向山脉和南岭地区E-W向山脉隔绝水汽运移的结果。基于碎屑锆石U-Pb年代学的物源分析指示南岭地区中部南雄盆地上白垩统底部和古新统物源以盆地周缘基岩为主,而南部和北部盆地白垩系物源以南岭地区中部和盆地周缘基岩为主。这种物源差别指示南岭地区经历了早白垩世、晚白垩世和古新世三期伸展作用。早、晚白垩世盆地的迁移和两期NW-SE伸展作用指示古太平洋板块在白垩纪发生由西向东的后撤、断离和角度变陡。而白垩纪与古近纪伸展应力场由NW-SE向转变为NE-SW向,指示华南内陆由古太平洋域向新特提斯域的构造转换发生在白垩纪与古近纪之交。Abstract: Cretaceous to Paleogene terrestrial basins in the Nanling area have important constraint on early climate changes and tectonic transition for the South China Block from late Mesozoic to Cenozoic. On the basis of overviews of distribution rules, depositional ages and thickness, provenances and structural features of terrestrial basins, Cretaceous to Paleogene climate changes and tectonic transition were discussed for the South China Block. The Nanling area can be divided into northern, middle and southern parts according to the three E-W Late Jurassic granitic belts. The middle partis mainly characterized by Late Cretaceous to Paleogene basins with varied exposed areas and depositional thickness. Both northern and southern parts can be divided into eastern and western segments by the NNE-striking Chenzhou-Linwu fault. The western segment is featured by bigger Cretaceous to Paleogene basins whereas the eastern segment by Late Cretaceous to Paleogene basins.Thick red beds indicate wet and hot climate conditions in the Nanling area during Cretaceous to Paleogene. During the middle Upper Cretaceous, aridity desert climate documented by aeolian deposits and evaporites occurred as a result of steam isolation by NE-SE striking mountains in the Southeast Coast and E-W striking mountains in the Nanling area. Provenance analysis through detrital zircon U-Pb ages imply that the lowest Upper Cretaceous and Paleocene in the Nanxiong Basin were derived mainly from peripheral bedrocks whereas Cretaceous to Paleogene basins in both the southern and northern parts from the middle part and its peripheral bedrocks. The disparity indicates that the Nanling area underwent three stages of extension throughout Early Cretaceous, Late Cretaceous and Paleocene. Migration of the Early and Late Cretaceous basins and two stages of NW-SE extension indicate the retreat, foundering and steepening of the Paleo-Pacific Plate during Cretaceous from west to east. The extension shift of Cretaceous and Paleogene from NW-SE to NE-SW imply that tectonic transition from the Paleo-Pacific to Neo-Tethys regimes occurred in the interior South China at the boundary of the Cretaceous and Paleogene.
-
-
[1] 曹 珂. 2013. 中国陆相白垩系地层对比[J].地质论评,59(1):24-40.
[2] 陈家驹,徐先兵,梁承华,徐亚东. 2021. 湘东南中泥盆统石英砂砾岩物源分析及其大地构造意义[J].地球科学,46(10):3421-3434.
[3] 陈丕基. 2000. 中国陆相侏罗、白垩系划分对比述评[J].地层学杂志, 24(2):114-119.
[4] 董月霞,肖龙,周海民,曾广策,王方正,王旭东,向 华,赵太平,柳小明. 2006. 广东三水盆地双峰式火山岩:空间展布、岩石学特征及其盆地动力学意义[J].大地构造与成矿学, 30(1):82-92.
[5] 广东省地质调查院. 2017. 中国区域地质志·广东志[M].北京: 地质出版社.
[6] 湖南省地质调查院. 2017. 中国区域地质志·湖南志[M].北京: 地质出版社.
[7] 华琛. 2020. 粤北丹霞盆地晚侏罗世早期火山岩成因及地球动力学机制[D].东华理工大学硕士学位论文.
[8] 黄乐清,黄建中,罗 来,王先辉,刘耀荣,梁恩云,马慧英. 2019. 湖南衡阳盆地东缘白垩系风成沉积的发现及其古环境意义[J].沉积学报,37(4):735-748.
[9] 贾 磊. 2016. 三水盆地与茂名盆地白垩系构造沉积特征及其对古南海俯冲的响应[D].中国地质大学(北京)硕士学位论文.
[10] 贾小辉,王晓地,杨文强,牛志军. 2014. 粤北雪山嶂A型花岗岩的形成时代、地球化学特征及其成因[J].矿物岩石,34(3):40-49.
[11] 江西省地质调查研究院. 2017. 中国区域地质志·江西志[M].北京: 地质出版社.
[12] 李出安,邹和平. 2011. 广东南雄断裂带Ar-Ar年龄及其地质意义[J].中山大学学报(自然科学版),50(1):129-132.
[13] 李四光. 1942. 南嶺何在[J]. 地质论评, 7(6): 253-265+395.
[14] 梁承华,徐先兵,李启铭,桂 林,汤 帅. 2019. 江南东段地区NE-SW向断裂带断层滑移矢量反演及其大地构造意义[J].地球科学,44(5):1761-1772.
[15] 刘 玲,李祥辉,王 尹,周 勇,曹 珂. 2012. 浙闽地区白垩纪早中期黏土矿物组成特征及其古气候显示[J].沉积学报,30(1):120-127.
[16] 刘成林,余小灿,赵艳军,王九一,王立成,徐海明,李坚,王春连. 2016. 华南陆块液体钾、锂资源的区域成矿背景与成矿作用初探[J].矿床地质,35(6):1119-1143.
[17] 娄 峰,于玉帅,林碧美,陈洪仁,周永洪,周梅林. 2020.广东河源断裂带基性岩脉时代及其与铀成矿关系[J]. 华南地质,36(2):117-128.
[18] 马铁球,闫全人,陈辉明,向忠金,周柯军,李 彬. 2012. 湖南攸县新市玄武岩锆石LA-ICP-MS U-Pb定年及其地球化学特征[J].华南地质与矿产, 28(4):340-349.
[19] 沈鹏飞. 2014. 南雄—丹霞盆地白垩纪沉积序列演化特征及其对南海构造转换的响应[D].中国地质大学(北京)博士学位论文.
[20] 舒良树,邓 平,王 彬,谭正中,余心起,孙 岩. 2004. 南雄-诸广地区晚中生代盆山演化的岩石化学、运动学与年代学制约[J].中国科学(D辑:地球科学), 34(1):1-13.
[21] 舒良树, 周新民, 邓 平, 余心起. 2006. 南岭构造带的基本地质特征[J]. 地质论评, 52(2): 251–265.
[22] 宋博文,张克信,徐亚东,侯亚飞,季军良,骆满生. 2020. 中国古近纪构造-地层区划及地层格架[J].地球科学,45(12):4352-4369.
[23] 童永生,李 茜,王元青. 2013.中国早古近纪陆相地层划分框架研究[J].地层学杂志,37(4):428-440.
[24] 童永生,李曼英,李 茜. 2002. 广东南雄盆地白垩系—古近系界线[J].地质通报, 21(10):668-674.
[25] 王 瑞, 姜宝玉. 2021. 中国晚白垩世古水系展布及其对鸭嘴龙类分布的影响[J].古地理学报,23(3):581-599.
[26] 王九一,刘成林,王春连,余小灿,颜开,高超. 2021. 晚白垩世—古近纪华南蒸发岩矿床形成的构造和气候耦合控制[J].地质学报,95(7):2041-2051.
[27] 王岳军,廖超林,范蔚茗,彭头平.2004. 赣中地区早中生代OIB碱性玄武岩的厘定及构造意义[J].地球化学, 33(2):109-117.
[28] 巫建华,徐勋胜,刘帅. 2012. 赣南-粤北地区晚白垩世早期长英质火山岩SHRIMP锆石U-Pb年龄及其地质意义[J].地质通报,31(8):1296-1305.
[29] 席党鹏,孙立新,覃祚焕,李国彪,李罡,万晓樵. 2021. 中国白垩纪岩石地层划分和对比[J].地层学杂志,45(3):375-401.
[30] 席党鹏,万晓樵,李国彪,李罡. 2019. 中国白垩纪综合地层和时间框架[J].中国科学: 地球科学,49(1):257-288.
[31] 夏 元, 徐先兵, 陈家驹. 2022. 华南鹰扬关构造带的大地构造属性与构造演化过程: 基于构造解析的认识[J]. 地质论评,68(6):2006-2020.
[32] 徐先兵,张岳桥,贾东,舒良树,王瑞瑞. 2009. 华南早中生代大地构造过程[J].中国地质,36(3):573-593.
[33] 徐先兵. 2011. 武夷山地区显生宙构造变形与年代学研究[D].南京大学博士学位论文.
[34] 徐先兵,梁承华,陈家驹,徐亚东. 2021. 南岭构造带基础地质特征与成矿地质背景[J].地球科学,46(4):1133-1150.
[35] 杨庆坤,刘富军,华琛,陈律,陈光剑,陈留勤. 2020. 粤北丹霞盆地晚白垩世丹霞组风成砂岩物源特征及古气候意义[J].干旱区资源与环境,34(6):73-80.
[36] 余心起,舒良树,邓平,王彬,祖辅平. 2003. 中国东南部侏罗纪—第三纪陆相地层沉积特征[J].地层学杂志, 27(3):254-263.
[37] 余心起,舒良树,邓国辉,王彬,祖辅平. 2005. 江西吉泰盆地碱性玄武岩的地球化学特征及其构造意义[J].现代地质, 19(1):133-140.
[38] 袁晓博, 方念乔. 2019. 三水盆地中渐新世火山记录的新建与南海扩张[J].地质通报,38(4):689-695.
[39] 张显球, 李罡,黎汉明. 2006. 广东南雄盆地南雄群的介形类动物群[J].微体古生物学报, 23(2):115-153.
[40] 张显球, 张喜满,侯明才,李罡,黎汉明. 2013. 南雄盆地红层岩石地层划分[J].地层学杂志,37(4):441-451.
[41] 张显球,林小燕. 2013.粤北丹霞盆地白垩系长坝组的介形类动物群[J].微体古生物学报,30(1):58-86.
[42] 张显球. 1992. 丹霞盆地白垩系的划分与对比[J].地层学杂志, 16(2):81-95.
[43] 张显球.1999. 广东省白垩—第三纪盆地地质概况[J]. 广东地质, 14(3): 53-57.
[44] 张族坤,徐亚军,刘强,杨坤光,杜远生. 2019. 华南东部白垩纪晚期-古近纪构造转换的沉积记录——以粤北南雄盆地为例[J].大地构造与成矿学,43(3):575-589.
[45] 钟志菲,巫建华. 2015. 江西会昌盆地埃达克质粗面岩年代学、地球化学与成因研究[J].东华理工大学学报(自然科学版),38(2):167-175.
[46] Cao L C, Shao L, Qiao P J, Zhao Z G,van Hinsbergen D J. 2018. Early Miocene birth of modern Pearl River recorded low-relief, high-elevation surface formation of SE Tibetan Plateau[J]. Earth and Planetary Science Letters, 496: 120-131.
[47] Cao S, Zhang L M, Wang C S, Ma J, Tan J,Zhang Z H.2020. Sedimentological characteristics and aeolian architecture of a plausible intermountain erg system in Southeast China during the Late Cretaceous[J]. Geological Society of America Bulletin, 132(11-12): 2475-2488.
[48] Chen C H, Lee C Y, Shinjo R. 2008. Was there Jurassic paleo-Pacific subduction in South China?: Constraints from 40Ar/39Ar dating, elemental and Sr–Nd–Pb isotopic geochemistry of the Mesozoic basalts[J]. Lithos, 106(1-2): 83-92.
[49] Chen L Q, Steel R J, Guo F S, Olariu C,Gong C L. 2017. Alluvial fan facies of the Yongchong Basin: Implications for tectonic and paleoclimatic changes during Late Cretaceous in SE China[J]. Journal of Asian Earth Sciences, 134: 37-54.
[50] Chen P R, Hua R M, Zhang B T, Lu J J,Fan C F. 2002. Early Yanshanian post-orogenic granitoids in the Nanling region—Petrological constraints and geodynamic settings [J]. Science in China Series D: Earth Sciences, 45(8): 755-768.
[51] Chen Y, Meng J, Liu H, Wang C S, Tang M, Liu T,Zhao Y N. 2022. Detrital zircons record the evolution of the Cathaysian Coastal Mountains along the South China margin[J]. Basin Research, 34(2): 688-701.
[52] Chen Z L, Ding Z L, Yang S L, Zhang C X, Wang X. 2016. Increased precipitation and weathering across the Paleocene-Eocene Thermal Maximum in central China[J]. Geochemistry, Geophysics, Geosystems, 17(6): 2286-2297.
[53] Chu Y, Lin W, Faure M, Allen M B,Feng Z T. 2020. Cretaceous exhumation of the Triassic intracontinental Xuefengshan Belt: Delayed unroofing of an orogenic plateau across the South China Block?[J]. Tectonophysics, 793: 228592.
[54] Chung S L, Cheng H, Jahn B M, O'Reilly S Y, Zhu B Q. 1997. Major and trace element, and Sr-Nd isotope constraints on the origin of Paleogene volcanism in South China prior to the South China Sea opening[J]. Lithos, 40(2-4): 203-220.
[55] Clyde W C, Ting S Y, Snell K E, Bowen G J, Tong Y S, Koch P L, Li Q, Wang Y Q. 2010. New paleomagnetic and stable-isotope results from the Nanxiong Basin, China: Implications for the K/T boundary and the timing of Paleocene mammalian turnover[J]. The Journal of Geology, 118(2): 131-143.
[56] Cukur D, Horozal S, Lee G H, Kim D C,Han H C. 2012. Timing of trap formation and petroleum generation in the northern East China Sea Shelf Basin[J]. Marine and Petroleum Geology, 36(1):154-163.
[57] He M Y, Zheng H B, Clift P D. 2013. Zircon U-Pb geochronology and Hf isotope data from the Yangtze River sands: Implications for major magmatic events and crustal evolution in Central China[J]. Chemical Geology, 360: 186-203.
[58] He Z Y, Xu X S, Niu Y L. 2010. Petrogenesis and tectonic significance of a Mesozoic granite–syenite–gabbro association from inland South China[J]. Lithos, 119(3-4): 621-641.
[59] Huang D Y, Su Y T, Lian X N, Gao J. 2022. Fossil caddis cases from the lower Eocene Huachong Formation of the Sanshui Basin, Foshan City, Guangdong Province, South China with detrital zircon analyses[J]. Palaeoentomology, 5(2): 105-112.
[60] Lee T Y, Lawver L A. 1994. Cenozoic plate reconstruction of the South China Sea region[J]. Tectonophysics, 235(1-2): 149-180.
[61] Li J H, Zhang Y Q, Dong S W, Li H L. 2012. Late Mesozoic-Early Cenozoic deformation history of the Yuanma Basin, central South China [J]. Tectonophysics, 570–571: 163-183.
[62] Li J H, Zhang Y Q, Dong S W, Su J B, Li Y, Cui J J,Shi W. 2013. The Hengshan low-angle normal fault zone: Structural and geochronological constraints on the Late Mesozoic crustal extension in South China[J]. Tectonophysics, 606: 97-115.
[63] Li J H, Ma Z L, Zhang Y Q, Dong S W, Li Y, Lu M A,Tan J Q.2014a. Tectonic evolution of Cretaceous extensional basins in Zhejiang Province, eastern South China: Structural and geochronological constraints[J]. International Geology Review, 56(13): 1602-1629.
[64] Li J H, Zhang Y Q, Dong S W,Johnston S T. 2014b. Cretaceous tectonic evolution of South China: A preliminary synthesis[J]. EarthScience Reviews, 134(1): 98-136.
[65] Li J H, Shi W, Zhang Y Q, Dong S W, Ma Z L. 2016. Thermal evolution of the Hengshan extensional dome in central South China and its tectonic implications: New insights into low-angle detachment formation[J]. Gondwana Research, 35(1): 425-441.
[66] Li J H, Dong S W, Cawood P A, Zhao G C, Johnston S T, Zhang Y Q,Xin Y J. 2018. An Andean-type retro-arc foreland system beneath northwest South China revealed by SINOPROBE profiling[J]. Earth and Planetary Science Letters, 490(1): 170-179.
[67] Li Z X, Li X H. 2007. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: A flat-slab subduction model[J]. Geology, 35(2): 179-182.
[68] Lin W,Wei W. 2020. Late Mesozoic extensional tectonics in the North China Craton and its adjacent regions: a review and synthesis[J]. International Geology Review, 62(7-8): 811-839.
[69] Ma M M, Liu X M,Wang W Y. 2018. Palaeoclimate evolution across the Cretaceous–Palaeogene boundary in the Nanxiong Basin (SE China) recorded by red strata and its correlation with marine records[J]. Climate of the Past, 14(3): 287-302.
[70] Meng L F, Li Z X, Chen H L, Li X H,Wang X C. 2012. Geochronological and geochemical results from Mesozoic basalts in southern South China Block support the flat-slab subduction model[J]. Lithos, 132-133: 127-140.
[71] Meng L F, Li Z X, Chen H L, Li X H,Zhu C. 2015. Detrital zircon U–Pb geochronology, Hf isotopes and geochemistry constraints on crustal growth and Mesozoic tectonics of southeastern China[J]. Journal of Asian Earth Sciences, 105: 286-299.
[72] Ren J Y, Tamaki K, Li S T,Junxia Z. 2002. Late Mesozoic and Cenozoic rifting and its dynamic setting in Eastern China and adjacent areas[J]. Tectonophysics, 344(3-4): 175-205.
[73] Röhl U, Westerhold T, Bralower T J, Zachos J C. 2007. On the duration of the Paleocene-Eocene thermal maximum (PETM)[J]. Geochemistry, Geophysics, Geosystems, 8(12): 1-13.
[74] Shu L S, Zhou X M, Deng P, Wang B, Jiang S Y, Yu J H, Zhao X X. 2009. Mesozoic tectonic evolution of the Southeast China Block: New insights from basin analysis [J]. Journal of Asian Earth Sciences, 34: 376-391.
[75] Tao N, Li Z X, Danišík M, Evans N J, Batt G E, Li W X, Pang C J, Jourdan F, Xu Y G, Liu L P. 2017. Thermochronological record of Middle–Late Jurassic magmatic reheating to Eocene rift-related rapid cooling in the SE South China Block[J]. Gondwana Research, 46(1): 191-203.
[76] Tao N, Li Z X, Danišík M, Evans N J, Li R X, Pang C J, Li WX, Jourdan F, Yu Q, Liu LP, Batt G E, Xu Y G. 2019. Post-250 Ma thermal evolution of the central Cathaysia Block (SE China) in response to flat-slab subduction at the proto-Western Pacific margin[J]. Gondwana Research, 75: 1-15.
[77] Ting S Y, Bowen G J, Koch P L, Clyde W C, Wang Y Q, Wang Y, McKenna M C. 2003. Biostratigraphic, chemostratigraphic, and magnetostratigraphic study across the Paleocene-Eocene boundary in the Hengyang Basin, Hunan, China[J]. Special Papers of the Geological Society of America, 369: 521-535.
[78] Wang D Z, Shu L S. 2012. Late Mesozoic basin and range tectonics and related magmatism in Southeast China[J]. Geoscience Frontiers, 3(2): 109-124.
[79] Wang J, Yuan Y J, Zhang D X, Chang S C. 2022. Detrital zircon geochronology of Late Cretaceous successions in the Ganzhou Basin, South China: evidence of a major tectonic transition[J]. Geological Society, London, Special Publications, 521: 1-12.
[80] Wang Q M, Li H L, Li T D, Ding X Z, Zhen J W, Zhang M,Fan Y X. 2022. Two-episode Tectono‐thermal Events of the Heyuan Fault in Late Cretaceous and Oligocene and their Tectonic Implications, Southernmost South China Block[J]. Acta Geologica Sinica (English Edition),96(2): 447-459.
[81] Wang Y J, Fan W M, Guo F, Peng T P,Li C W. 2003. Geochemistry of Mesozoic mafic rocks adjacent to the Chenzhou-Linwu fault, South China: implications for the lithospheric boundary between the Yangtze and Cathaysia blocks[J]. International Geology Review, 45(3), 263-286.Wang Y Q, Li Q, Bai B, Jin X, Mao F Y,Meng J. 2019. Paleogene integrative stratigraphy and timescale of China[J]. Science China Earth Sciences, 62(1): 287-309.Wang Y, Wang Y J, Li S B, Seagren E, Zhang Y Z, Zhang P Z, Qian X. 2020. Exhumation and landscape evolution in eastern South China since the Cretaceous: New insights from fission-track thermochronology[J]. Journal of Asian Earth Sciences, 191: 104239.Xie Y L, Wu F L, Fang X M, Zhang D W, Zhang W L.2020. Early Eocene southern China dominated by desert: Evidence from a palynological record of the Hengyang Basin, Hunan Province[J]. Global and Planetary Change, 195: 103320.Xu X B, Zhang Y Q, Jia D, Shu L S. 2011. U-Pb Dating of volcanic rocks and granites along the Wuyishan belt: constraints on timing of late Mesozoic tectonic events in southeast China[J]. Acta Geologica Sinica(English Edition), 85(1): 130-144.Xu X B, Tang S,Lin S F.2016. Paleostress inversion of fault-slip data from the Jurassic to Cretaceous Huangshan Basin and implications for the tectonic evolution of southeastern China[J]. Journal of Geodynamics, 98: 31-52.Xu X B, Liang C H, Chen J J,Xu Y D.2021a. Provenance analysis of Jurassic basins along Chaling–Chenzhou–Linwu Fault, South China: Implications for palaeogeographic reconstruction and Mesozoic tectonic transition[J]. Geological Journal, 56(5): 2656-2675.Xu X B, Liang C H,Xu Y D.2021b. Kinematic analysis of fault-slip data in the Nanling area and Cretaceous to Paleogene tectonic evolution of the Central South China Block[J]. Journal of Asian Earth Sciences, 221: 104951.Xu X S, O'Reilly S Y, Griffin W L, Deng P, Pearson N J. 2005. Relict Proterozoic basement in the Nanling Mountains (SE China) and its tectonothermal overprinting[J]. Tectonics, 24(2): 1-17.Yan Y, Hu X Q, Lin G, Santosh M,Chan L S.2011. Sedimentary provenance of the Hengyang and Mayang basins, SE China, and implications for the Mesozoic topographic change in South China Craton: Evidence from detrital zircon geochronology[J]. Journal of Asian Earth Sciences, 41(6): 494-503.Ye Q, Mei L F, Shi H S, Du J Y, Deng P, Shu Y, Camanni G. 2020. The influence of pre-existing basement faults on the Cenozoic structure and evolution of the proximal domain, northern South China Sea rifted margin[J]. Tectonics, 39(3): e2019TC005845.Yu X C, Wang C L, Bertolini G, Liu C L,Wang J Y.2021. Damp-to dry aeolian systems: Sedimentology, climate forcing, and aeolian accumulation in the Late Cretaceous Liyou Basin, South China[J]. Sedimentary Geology, 426: 106030.Zhao M T, Ma M M, He M, Qiu Y D, Liu X M.2021. Evaluation of the four potential Cretaceous-Paleogene (K-Pg) boundaries in the Nanxiong Basin based on evidences from volcanic activity and paleoclimatic evolution[J]. Science China: Earth Sciences, 64(4): 631-641.Zheng H B, Clift P D, Wang P, Tada R J, Jia J T, He M Y, Jourdan F. 2013. Pre-miocene birth of the Yangtze River[J]. Proceedings of the National Academy of Sciences, 110(19): 7556-7561.Zhou X M, Sun T, Shen W Z, Shu L S, Niu Y L.2006. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: a response to tectonic evolution[J]. Episodes, 29(1): 26-33.Zhou H M, Xiao L, Dong Y X, Wang C Z, Wang F Z,Ni P Z.2009. Geochemical and geochronological study of the Sanshui basin bimodal volcanic rock suite, China: implications for basin dynamics in southeastern China[J]. Journal of Asian Earth Sciences, 34(2): 178-189.Zhou X M, Li W X. 2000. Origin of Late Mesozoic igneous rocks in Southeastern China: implications for lithosphere subduction and underplating of mafic magmas[J]. Tectonophysics, 326(3-4): 269-287.Zhu B Q, Wang H F, Chen Y W, Chang X Y, Hu Y G, Xie J. 2004. Geochronological and geochemical constraint on the Cenozoic extension of Cathaysian lithosphere and tectonic evolution of the border sea basins in East Asia[J]. Journal of Asian Earth Sciences, 24(2): 163-175.
-
计量
- 文章访问数: 1358
- PDF下载数: 129
- 施引文献: 0