Zircon U-Pb Geochronology and Tectonic Settings of Neoproterozoic Lamprophyre in Southern Yangtze Block
-
摘要: 鹤峰煌斑岩大地构造上位于江南造山带北缘、扬子陆块南部,是鄂西南地区唯一的岩体,本文采用LA-ICP-MS锆石U-Pb定年及微量元素测试方法对其形成时代进行厘定,并利用锆石微量元素探讨其形成构造环境。结果表明:(1)岩体206Pb/238U加权平均年龄为839±5 Ma(MSWD=2.1,n=24),形成时代为新元古代;(2)岩体锆石都具有较高稀土元素总量、重稀土元素(HREE)富集、轻稀土元素(LREE)亏损、强烈的Ce正异常和Eu负异常特征,与岩浆锆石的特征一致;在Y-U/Yb图中显示形成于靠近洋壳的陆壳锆石区域,在锆石微量元素构造环境判别图解中,大部分样品点落入火山弧环境区域,少量样品点落入板内环境区域。综合分析认为,鹤峰煌斑岩形成于晋宁期弧后盆地伸展环境,可能与华夏陆块向扬子陆块俯冲过程中发生俯冲板片的折断、拆沉引发深部地幔上涌的动力学机制有关。Abstract: Hefeng lamprophyre, as the only intrusion in southwestern Hubei province, is tectonically located in the northern margin of the Jiangnan orogenic belt and the southern part of the Yangtze Block. LA-ICP-MS U-Pb dating and trace element testing on zircons of Hefeng lamprophyre are used to determine its formation age and discuss its tectonic environment in this paper. The results show that: (1) The 206Pb/238U weighted average age of the intrusion is 839 ± 5 Ma (MSWD=2.1, n=24), indicating it had intruded in Neoproterozoic; (2) The zircons in intrusion are characterized by high total rare earth elements, enrichment of heavy rare earth elements (HREE), depletion of light rare earth elements (LREE), strong positive Ce anomalies and negative Eu anomalies, which are consistent with the characteristics of magmatic zircons. The Y-U/Yb diagram shows that it was formed in the continental crust zircon area near the oceanic crust. In the zircon trace element tectonic environment discrimination diagram, most rock samples were fall into the volcanic arc environment area, while a small number of samples into the intraplate environment area. Comprehensive analysis shows that Hefeng lamprophyre was formed in the extension environment of the Jinning Period back arc basin, which may be related to the dynamic mechanism of deep mantle upwelling caused by the fracture and delamination of subduction plates during the subduction of the Cathaysian Block to the Yangtze block.
-
Key words:
- lamprophyre /
- zircon /
- U-Pb chronology /
- Trace elements /
- Neoproterozoic /
- Yangtze block
-
-
[1] 柏道远,贾宝华,钟 响,贾朋远,刘耀荣,马铁球.2011.雪峰造山带新元古代构造演化框架[J].沉积与特提斯地质,31(3):78-87.
[2] 柏道远,蒋启生,李 彬,姜 文,李银敏.2021.湘东北冷家溪群沉积岩地球化学特征及其构造意义[J].地质科技通报,40(1):1-13.
[3] 陈 林,王红军,方喜林,曹文胜.2018.湖北省鹤峰县走马地区南华系“大塘坡式”锰矿的发现及其地质意义初探[J].资源环境与工程,32(3):345-350.
[4] 陈建书,代雅然,唐 烽,彭成龙,张嘉玮,朱和书,陈 兴,王文明,龚桂源.2020.扬子地块周缘中元古代末—新元古代主要构造运动梳理与探讨[J].地质论评,66(3):533-554.
[5] 程进雄,李武显.2021.赣中地区周潭群斜长角闪岩年龄、成因及对华南新元古代构造演化的地质意义[J].地球化学,50(6):537-549.
[6] 代雅然,张嘉玮,彭松柏,叶太平,王 敏,戴传固,张 慧,陈建书.2019.贵州梵净山地区新元古代拉伸纪岩浆演化时序[J].地质通报,38(2-3):360-370.
[7] 丁炳华,史仁灯,支霞臣,郑 磊,陈 雷.2008.江南造山带存在新元古代~850 Ma俯冲作用――来自皖南SSZ型蛇绿岩锆石SHRIMPU-Pb年龄证据[J].岩石矿物学杂志,27(5):375-388.
[8] 董树文,薛怀民,项新葵,马立成.2010.赣北庐山地区新元古代细碧-角斑岩系枕状熔岩的发现及其地质意义[J].中国地质,37(4):1021-1033.
[9] 方维萱,胡瑞忠,苏文超,肖加飞,漆 亮,蒋国豪.2002.贵州镇远地区钾镁煌斑岩类的侵位时代[J].科学通报[J].47(4):307-312.
[10] 冯定犹,李志昌.1991.黄陵花岗岩类岩基南部岩体侵入时代和同位素特征[J].湖北地质,5(2):1-12.
[11] 高林志,陈建书,戴传固,丁孝忠,王雪华,刘燕学,王 敏,张 恒.2014.黔东地区梵净山群与下江群凝灰岩SHRIMP锆石U-Pb年龄[J].地质通报,33(7):949-959.
[12] 高林志,戴传固,刘燕学,王 敏,王雪华,陈建书,丁孝忠,张传恒,曹 茜,刘建辉.2010.黔东南-桂北地区四堡群凝灰岩SHRIMP锆石U-Pb年龄及其地层学意义[J].地质通报,29(2):1259-1267.
[13] 高林志,黄志忠,丁孝忠,刘燕学,张传恒,乇自强,庞建峰,韩坤英.2012.庐山筲箕洼组与星子岩群年代地层关系及SHRIMP锆石U-Pb年龄的制约[J].地球学报,33(3):295-304.
[14] 高 维,张传恒.2009.长江三峡黄陵花岗岩与莲沱组凝灰岩的锆石SHRIMP U-Pb年龄及其构造地层意义[J].地质通报,28(1):45-50.
[15] 葛文春,李献华,李正祥,周汉文,李寄嵎.2001a.桂北新元古代两类过铝花岗岩的地球化学研究[J].地球化学,30(2):24-34.
[16] 葛文春,李献华,梁细荣,王汝成,李正祥,周汉文.2001b.桂北元宝山宝坛地区约825 Ma镁铁-超镁铁岩的地球化学及其地质意义[J].地球化学,30(2):123-130.
[17] 顾雪祥,刘建明,Schulz O,Vavtar F,郑明华.2003.江南造山带雪峰隆起区元古宙浊积岩沉积构造背景的地球化学制约[J].地球化学,32(5):406-426.
[18] 郭智超,时 毓,王新宇,付 伟,刘希军,覃康乐,刘 磊.2019.桂北罗城垒洞煌斑岩LA-ICP-MS锆石U-Pb定年及其地质意义[J].桂林理工大学学报,38(3):208-216.
[19] 韩吟文,马振东,张宏飞,张本仁,李方林,高 山,鲍征宇.2003.地球化学[M].北京:地质出版社,189-197.
[20] 和文言,莫宣学,喻学惠,董国臣,和中华,黄雄飞,李小伟,姜丽莉.2014.滇西北衙煌斑岩的岩石成因及动力学背景:年代学、地球化学及Sr-Nd-Pb-Hf同位素约束[J].岩石学报,30(11):3287-3300.
[21] 赖绍聪,朱 毓,2020.扬子板块西缘新元古代典型中酸性岩浆事件及其深部动力学机制:研究进展与展望[J].地质力学学报,26(5):759-790.
[22] 李献华,李武显,何 斌.2012.华南陆块的形成与Rodinia超大陆聚合-裂解――观察、解释与检验[J].矿物岩石地球化学通报,31(6):543-559.
[23] 李献华,李正祥,葛文春,周汉文,李武显,刘 颖.2001.华南新元古代花岗岩的锆石U-Pb年龄及其构造意义[J].矿物岩石地球化学通报,20(3):271-273.
[24] 李献华,李正祥,周汉文,刘 颖,梁细荣.2002.川西新元古代玄武质岩浆岩的锆石U-Pb年代学、元素和Nd同位素研究:岩石成因与地球动力学意义[J].地学前缘,9(4):329-338.
[25] 李献华,王选策,李武显,李正祥.2008.华南新元古代玄武质岩石成因与构造意义:从造山运动到陆内裂谷[J].地球化学,37(4):382-398.
[26] 李子云,马文运.1992.宁乡县云影窝含金刚石钾镁煌斑岩地质特征[J].湖南地质,12(4):221-225.
[27] 林木森,彭松柏,吴长锋,王新宇,吴祥珂.2019.桂北融水地区钾镁煌斑岩Ar-Ar年代学、地球化学特征及其构造意义[J].地质学报,93(8):1985-1997.
[28] 林玮鹏,丘志力,李子云,陈炳辉,李榴芬,龚盛玮.2009.湖南宁乡V号岩管煌斑岩的岩石地球化学特征[J].资源调查与环境,30(3):180-187.
[29] 刘观亮,李志昌,张自超.1997.扬子地台钾镁煌斑岩Nd、Sr、Pb同位素特征[J].地球学报,18(增刊):21-23.
[30] 刘观亮,张自超,李志昌,简 平,刘灵燕.1995.湖南宁乡钾镁煌斑岩中火山微球粒的初步研究[J].岩石矿物学杂志,14(3):242-251.
[31] 陆慧娟,华仁民,毛光周,龙光明.2006.江西德兴泗洲辉绿岩体锆石LA-ICP-MS定年及其地质意义[J].地质学报,80(7):1017-1025.
[32] 陆慧娟,华仁民,毛光周,龙光明.2007.德兴地区新元古代镁铁-超镁铁岩的地球化学特征及其地质意义[J].矿物学报,27(2):153-160.
[33] 罗会文,杨光树.1989.贵州省镇远地区钾镁煌斑岩岩石特征[J].岩石矿物学杂志,8(2):97-109.
[34] 陕 亮,柯贤忠,庞迎春,刘家军,赵辛敏,王 晶,康 博,张 鲲.2017.湘东北栗山地区新元古代岩浆活动及其地质意义:锆石U-Pb年代学、Lu-Hf同位素证据[J].地质科技情报,36(6):32-42.
[35] 沈发奎,袁蔺平,杨七文,薛康成.1990.川滇西部地区钾质煌斑岩特征及其成因[J].矿物岩石,10(1):69-78.
[36] 孙海清,黄建中,郭乐群,陈 俊.2012.湖南冷家溪群划分及同位素年龄约束[J].华南地质与矿产,18(1):20-26.
[37] 谭满堂,龙文国,魏运许,邓 新,田 洋,王 晶,金 巍,徐大良,徐 扬,黄 皓.2022.湘东北仓溪岩群锆石U-Pb年龄及新元古代弧盆系演化[J].华南地质,38(1):120-134.
[38] 谭清立,王岳军,张玉芝,杨 雪,芶琪钰,周永智,张立敏.2019.江南造山带东段陈蔡地区新元古代高硅埃达克质花岗闪长岩的发现及其构造启示[J].岩石学报,35(6):1907-1923.
[39] 唐增才,陈忠大,胡开明,周汉文,吴小勇,董学发,赵旭东,余盛强.2018.浙西开化地区新元古代(828 Ma)弧后盆地扩张――来自类复理石和辉绿岩墙的年代学和地球化学证据[J].地球科学,43(S2):1-15.
[40] 王 登,余江浩,陈威.2020.鄂西鹤峰地区上二叠统大隆组页岩储层特征及资源潜力[J].华南地质与矿产,36(1):9-18.
[41] 王 磊,金鑫镖,王新宇,吴祥珂,刘重芃,段桂玲.2015.桂北罗城垒洞煌斑岩形成过程:地球化学、年代学和Sr-Nd-Pb同位素约束[J].地质科技情报,34(1):10-19.
[42] 王 敏,戴传固,王雪华,陈建书,马会珍.2011.贵州梵净山白云母花岗岩锆石年代、铪同位素及对华南地壳生长的制约[J].地学前缘,18(5):213-223.
[43] 王孝磊,周金城,邱检生,张文兰,柳小明,张桂林.2006.桂北新元古代强过铝花岗岩的成因:锆石年代学和Hf同位素制约[J].岩石学报,22(2):326-342.
[44] 王孝磊,周金城,陈 昕,张凤凤,孙梓铭.2017.江南造山带的形成与演化[J].矿物岩石地球化学通报,36(5):714-735.
[45] 王新宇,彭松柏,吴祥珂,陆 刚.2013.桂北地区钾镁煌斑岩的发现及找矿意义[J].地质科技情报,31(3):93.
[46] 王 艳,马昌前,王连训,刘园园.2018.扬子东南缘新元古代花岗岩的锆石U-Pb年代学、地球化学和Sr-Nd-Hf同位素:对地壳生长的约束[J].地球科学,43(3):635-654.
[47] 吴福元,李献华,郑永飞,高 山.2007.Lu-Hf同位素体系及其岩石学应用[J].岩石学报,23:185-220.
[48] 吴元保,陈道公,夏群科,涂湘林,程 昊,杨晓志.2003.大别山黄土岭麻粒岩中锆石LA-ICP-MS微区微量元素分析和Pb-Pb定年[J].中国科学(D辑),33(1):20-28.
[49] 徐丽娟,李 萍,刘 铮,王国昌.2021.扬子地块西缘峨山新元古代A2型花岗闪长岩的成因及构造意义[J].岩石矿物学杂志,40(2):383-394.
[50] 薛怀民,马 芳,宋永勤.2012.江南造山带西南段梵净山地区镁铁质-超镁铁质岩:形成时代、地球化学特征与构造环境[J].岩石学报,28(9):3015-3030.
[51] 薛怀民,马 芳,宋永勤,谢亚平.2010.江南造山带东段新元古代花岗岩组合的年代学和地球化学:对扬子与华夏地块拼合时间与过程的约束[J].岩石学报,26(11):3215-3244.
[52] 杨风丽.周晓峰,胡虞杨,杨瑞青,彭韵心.2020.新元古代扬子克拉通TSM盆地原型分析[J].石油实验地质,42(5):742-755.
[53] 叶德隆,王 群,杨金香,任迎新.1991.湖北大洪山南段的金伯利岩和钾镁煌斑岩[J].地质科技情报,10(增刊):37-44.
[54] 张传恒,高林志,史晓颖,韩 瑶,刘耀明.2014.梵净山群火山岩锆石SHRIMP年龄及其年代地层学意义[J].地学前缘,21(2):139-143.
[55] 张春红,范蔚茗,王岳军,彭头平.2009.湘西隘口新元古代基性-超基性岩墙年代学和地球化学特征:岩石成因及其构造意义[J].大地构造与成矿学,33(2):283-293.
[56] 张世涛,马东升,陆建军,章荣清,蔡 杨,丁超超.2016.桂北平英花岗岩锆石U-Pb年代学、Hf同位素、地球化学特征及其地质意义[J].高校地质学报,22(1):92-104.
[57] 张玉芝,王岳军,范蔚茗,张爱梅,张菲菲.2011.江南隆起带新元古代碰撞结束时间:沧水铺砾岩上下层位的U-Pb年代学证据[J].大地构造与成矿学,35(1):32-46.
[58] 张玉芝,王岳军,郭小飞,甘成势,邢晓婉,宋菁菁.2015.江南中段慈化地区新元古代高镁安山岩的厘定及其构造意义[J].地球科学——中国地质大学学报,40(11):1781-1795.
[59] 张彦杰,周效华,廖圣兵,余明刚,蒋 仁,姜 杨.2011.江南造山带北缘鄣源基性岩地质——化学特征及成因机制[J].高校地质学报,17(3):393-405.
[60] 周金城,王孝磊,邱检生.2009.江南造山带形成过程中若干新元古代地质事件[J].高校地质学报,15(4):453-459.
[61] 周效华,高天山,马 雪,张彦杰,廖圣兵,余明刚,陈丹丹,朱延辉.2014.江南造山带东段鄣源枕状玄武岩的年代学与构造属性研究[J].资源调查与环境,35(4):235-244.
[62] 卓皆文,江卓斐,江新胜,王 剑,蔡娟娟,熊国庆.2017.川西新元古代苏雄组层型剖面SHRIMP锆石U-Pb年龄及其地质意义[J].地质论评,63(1):177-188.
[63] Belousova E A, Griffin W L, Pearson N J. 1998. Trace element composition and cathodoluminescence properties of southern African kimberlitic zircons[J]. Mineralogical Magazine, 62(3): 355-366.
[64] Belousova E A, Grifin W L, O’Reilly S Y, Fisher N I. 2002. Igneous zircon: Trace element composition as an indicator of source rock type[J]. Contributions to Mineralogy and Petrology, 143:602-622.
[65] Grifin W L, Wang X, Jackson S E, Pearson N J, O'Reilly S Y, Xu X S, Zhou X M. 2002. Zircon chemistry and magma mixing, SE China: in situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes[J]. Lithos, 61: 237-269.
[66] Grimes C B, John B E, Kelemen P B, Mazdab F K, Wooden J L, Chead1e M J, Hangh J K, Schwartz J J. 2007. Trace element chemistry of zircon from oceanic crust: A method for distinguishing detrital zircon provenance[J]. Geology, 35(7): 643-646.
[67] Grimes C B, Wooden J L, Cheadle M J, John B E. 2015. “Fingerprinting” tectono-magmatic provenance using trace elements in igneous zircon[J]. Contributions to Mineralogy and Petrology, 170(5-6): 1-26.
[68] Hanchar J M, Westrenen W V. 2007. Rare earth element behavior in zircon-melt systems[J]. Elements, 3: 37-42.
[69] Hoskin P W O, Ireland T R. 2000. Rare earth element chemistry of zircon and its use as a provenance indicator[J]. Geology, 28: 627-630.
[70] Hoskin P W O, Schaltegger U. 2003. The composition of zircon and igneous and metamorphic petrogenesis [J]. Reviews in Mineralogy and Geochemistry, 53:27- 62.
[71] Li X H, Liang X R, Sun M, Liu Y, Tu X G. 2000. Geochronology and geochemistry of single-grain zircons: Simultaneous in-stu analysis U-Pb age and traced elements by LAM-ICP-MS[J]. European Journal of Mineralogy, 12: 1015-1024.
[72] Li X H, Li Z X, Ge W C, Zhou H W, Li W X, Liu Y, Wingate M T D. 2003. Neoproterozoic granitoids in South China: Crustal melting above a mantle plume at ca. 825Ma[J]? Precambrian Research, 122: 45-83.
[73] Li Z X, Li X H, Kinny P D, Wang J. 1999. The breakup of Rodinia:Did it start with a mantle plume beneath South China?[J]. Earth and Planetary Science Letters, 173(3): 171-181.
[74] Li Z X, Li X H, Kinny P D, W ang J, Zhang S, Zhou H. 2003. Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton, South China and correlations with other continents: Evidence for a mantle superplume that broke up Rodinia[J]. Precambrian Research, 122: 85-109.
[75] Liu Y S, Hu Z C, Gao S, Günther D, Xu J, Gao C G, Chen H H. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 257: 34-43.
[76] Liu Y S, Gao S, Hu Z C, Gao C G, Zong K Q, Wang D B. 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths[J]. Journal of Petrology, 51: 537-571.
[77] Ludwig K R. 2003. ISOPLOT 3.00: A geochronological toolkit for microsoft excel[M]. Berkeley Geochronology Centre Special Publication, 4: 1-74.
[78] Ma L, Jiang S Y, Hofmann A W, Dai B Z, Hou M L, Zhao K D, Chen L H, Li J W, Jiang Y H. 2014. Lithospheric and asthenospheric sources of lamprophyres in the Jiaodong Peninsula: A consequence of rapid lithospheric thinning beneath the North China Craton?[J]. Geochimica et Cosmochimica Acta, 124: 250-271.
[79] Mahéo G, Blichert-Toft J, Pin C, Guillot S, Pecher A. 2009. Partial melting of mantle and crustal sources beneath South Karakorum, Pakistan: Implications for the Miocene geodynamic evolution of the India-Asia convergence zone[J]. Journal of Petrology, 50(3): 427-449.
[80] Niu Y L, Wilson M, Humphreys E R, O’Hara M. 2011. The origin of intra-plate ocean island basalts (OIB): The lid effect and its geodynamic implications[J]. Journal of Petrology, 52(7-8): 1443-1468.
[81] Owen J P. 2008. Geochemistry of lamprophyres from the Western Alps, Italy: Implications for the origin of an enriched isotopic component in the Italian mantle. Contributions to Mineralogy and Petrology, 155(3): 341-362.
[82] Rock N M S, Bowes D R, Wright A E. 1991. Lamprophyres[M]. Glasgow: Wright –Blackie, 1-285.
[83] Schulz B, Klemd R, Bratz H. 2006. Host rock compositional controls on zircon trace element signatures in metabasites from the Austroalpine basement[J]. Geochimica et Cosmochimica Acta, 70(3): 697-710.
[84] Taylor S R, McLennan S M. 1985. The Continental Crust: Its Composition and Evolution [M]. Oxford: Blackwell Scientific Publication, 1-312.
[85] Wang X L, Zhou J C, Qiu J S, Zhang W L, Liu X M, Zhang G L. 2006. LA-ICP-MS U-Pb zircon geochronology of the Neoproterozoic igneous rocks from Northern Guangxi, South China: implications for petrogenesis and tectonic evolution[J]. Precambrian Research, 145(1): 111-130.
[86] Wang X L, Zhou J C, Griffin W L, Zhao G C, Yu J H, Qiu J S, Zhang Y J, Xing G F. 2014. Geochemical zonation across a Neoproterozoic orogenic belt, Isotopic evidence from granitoids and metasedimentary rocks of the Jiangnan orogen, China[J]. Precambrian Research, 242: 154-171.
[87] Zhao G C. 2015. Jiangnan orogen in South China: Developing from divergent double subduction[J]. Gondwana Research, 27(3): 1173-1180.
[88] Zheng Y F, Wu R X, Wu Y B, Zhang S B, Yuan H L, Wu F Y. 2008. Rift melting of juvenile arc derived crust: Geochemical evidence from Neoproerozoic volcanoc and granitic rocks in the Jiangnan orogen, South China[J]. Precombrian research, 163(3-4): 351-383.
[89] Zheng Y F, Zhang S B,Zhao Z F, Wu Y B, Li X H, Li Z X, Wu F Y. 2007. Contrasting zircon Hf and O isotopes in the two episodes Neopterozoic granitoids in south China: Implications for growth and reworking of continental crus t [J]. Lithos, 96(1-2): 127-150.
[90] Zhou J C, Wang X L, Qiu J S. 2009. Geochronology of Neoproterozoic mafic rocks and sandstones from northeastern Guizhou, South China: coeval arc magmatism and sedimentation[J]. Precambrian Research, 170: 27-42.
[91] Zhou M F, Yan D P, Kennedy A K, Li Y Q, Ding J. 2002. SHRIMP U-Pb zircon geochronological and geochemical evidence for Neoproterozoic arc magmatissm along the western margin of the Yangtze block, south China [J]. Earth and Planetary Science letters, 196(1-2): 51-67.
[92] Zhou M F, Ma Y X, Yan D P, Xia X,Zhao J H, Sum M. 2006. The Yanbian terrant (southern Sichuan Province, SW China): A Neoproterozoic arc assemblage in the western margin of the Yangtze block[J]. Precambrian Research, 144: 19-38.
-
计量
- 文章访问数: 568
- PDF下载数: 141
- 施引文献: 0