Study on the Disintegration and Micro Characteristics of Microclastic Rocks in Northwest Hunan, Wuling Mountain
-
摘要: 武陵山湘西北地区泥质粉砂岩、粉砂质泥岩等细碎屑岩类地层滑坡发育较密集,为该区重要的易滑地层。为探索细碎屑岩崩解特性及其微观特征,通过室内耐崩解试验,分析其耐崩解指数、崩解物成分、崩解产物颗粒形态,并对崩解机理进行了探讨。研究结果表明:武陵山湘西北地区细碎屑岩的崩解性较强,且泥质含量越高,崩解能力越强;崩解过程中,岩石颗粒矿物含量持续增大,而黏土矿物则表现出较稳定的持续下降,颗粒整体形态由扁平、棱角状表面向等轴、圆形表面转变。从崩解的微观机制上分析,细碎屑岩的崩解能力主要受其矿物成分及微观结构影响:含亲水性黏土矿物较多时,遇水后黏土矿物的水化作用以及膨胀作用导致了崩解的产生;黏土矿物较少时,颗粒表面的楔裂压力促使裂隙向纵深发展,最终使裂隙贯通。Abstract: The landslides of microclastic rocks strata such as muddy siltstone and silty mudstone in the Northwest Hunan area of Wuling Mountain are densely developed and are important slippery strata in this area. In order to explore the disintegration characteristics and microscopic characteristics of microclastic rock, the disintegration resistance index, the composition of disintegration products, and the particle shape of disintegration products of microclastic rock are analyzed through laboratory disintegration resistance test, and then the disintegration mechanism is discussed. The results show that the disintegration of the microclastic rocks in the northwest of Hunan area is strong, and the higher the argillaceous content is, the stronger the disintegration ability is. During the disintegration process, the content of the rock particle minerals continue to increase, while the clay minerals show relatively stable continuous decline, and the particles surface is firstly flat and angular and then equidimensional and circular. As far as the micro mechanism of disintegration is concerned, the disintegration ability of microclastic rock is mainly affected by its mineral composition and microstructure. When there are more hydrophilic clay minerals, the hydration and expansion of clay minerals lead to disintegration, and when there are fewer clay minerals, the wedge fracture pressure on the particle surface promotes the fracture to develop in-depth and finally makes the fracture link together.
-
-
[1] 柴肇云,张亚涛,张学尧.2015.泥岩耐崩解性与矿物组成相关性的试验研究[J].煤炭学报,40(5):1188-1193.
[2] 邓 涛,詹金武,黄 明,范富童.2014.酸碱环境下红层软岩—泥质页岩的崩解特性试验研究[J].工程地质学报,22(2):238-243.
[3] 郭永春,谢 强,文江泉.2012.水热交替对红层泥岩崩解的影响[J].水文地质工程地质,39(5):69-73.
[4] 梁 冰,谭晓引,姜利国,焦波波.2016.冻—融及干—湿循环对泥质岩崩解特性影响的试验研究[J].岩土工程学报,38(4):705-711.
[5] 刘小红,朱杰兵,曾 平,汪 斌.2015.干湿循环对岸坡粉砂岩劣化作用试验研究[J].长江科学院院报,32(10):74-77+84.
[6] 刘跃东.2019.卸荷作用下水对崩解型泥岩的损伤机理研究[D].煤炭科学研究总院博士学位论文.
[7] 申培武,唐辉明,汪丁建,何 成,张雅慧.2017.巴东组紫红色泥岩干湿循环崩解特征试验研究[J].岩土力学,38(7):1990-1998.
[8] 苏永华,赵明华,刘晓明.2005.软岩膨胀崩解试验及分形机理[J].岩土力学,26(5):728-732.
[9] 孙利辉,纪洪广,杨本生.2019.西部典型矿区弱胶结地层岩石的物理力学性能特征[J].煤炭学报,44(3):866-874.
[10] 田巍巍.2018.干湿循环下不同风化程度泥质粉砂岩崩解特性试验研究[J].水资源与水工程学报,29(6):223-226.
[11] 王开林.2018.神东矿区弱胶结砂岩的宏细观结构及力学特征研究[D].河南理工大学博士学位论文.
[12] 叶朝良,薛飞招,谢玉芳,曹风旭.2019.炭质泥岩工程力学特性试验研究[J].铁道工程学报,36(11):1-6.
[13] 曾 铃,史振宁,付宏渊,何忠明,胡庆国.2016.预崩解炭质泥岩路用性能及其基于三轴CT试验的力学特性[J].中南大学学报(自然科学版),47(6):2030-2036.
[14] 张 丹,陈安强,刘刚才.2012.紫色泥岩水热条件下崩解过程的分维特性[J].岩土力学,33(5):1341-1346.
[15] 张宗堂,高文华,张志敏,唐骁宇,邬 俊.2020.基于Weibull分布的红砂岩颗粒崩解破碎演化规律[J].岩土力学,41(3):877-885.
[16] 赵晓彦,李昆鹏,肖 典,曾彩云,张 良.2020.基于分形理论的粉砂质泥岩酸雨崩解特征研究[J].工程地质学报,28(2):232-239.
[17] 中华人民共和国国土资源部.2015.中华人民共和国地质矿产行业标准《岩石物理力学性质试验规程第9部分:岩石耐崩解试验DZ/T0276.9-2015》[S].北京:中国标准出版社,1-2.
[18] Admassu Y, Hamdan H, Gautam T. 2016. Multivariate statistical approach to re-evaluate the slake durability index test (ASTM 4644-08) [J]. Engineering Geology, 209: 12-20.
[19] Dhakal G, Yoneda T, Kato M, Kaneko K. 2002. Slake durability and mineralogical properties of some pyroclastic and sedimentary rocks [J]. Engineering Geology, 65(1): 31-45.
[20] Erguler Z A, Shakoor A. 2009. Relative contribution of various climatic processes in disintegration of clay-bearing rocks [J]. Engineering Geology, 108(1-2): 36-42.
[21] Gautam T P, Shakoor A. 2013. Slaking behavior of clay-bearing rocks during a one-year exposure to natural climatic conditions [J]. Engineering Geology, 166: 17-25.
[22] Pejon O J, Zuquette L V. 2002. Analysis of cyclic swelling of mudrocks [J]. Engineering Geology, 67(1-2): 97-108.
-
计量
- 文章访问数: 594
- PDF下载数: 161
- 施引文献: 0