Effect of Initial Geo-Stress on Deformation of Anti-Dip Layered Rock Slopes
-
摘要: 初始地应力场对反倾层状岩质边坡的变形破坏会产生重要影响。以西部代表性水电工程岸坡区域的实测地应力资料为基础选择9 种初始地应力状态,以非连续变形分析方法(DDA)为工具,对不同边坡坡角和岩层角度组合的反倾岩质边坡模型进行变形分析。结果表明考虑初始地应力的释放之后,边坡倾倒变形所需的岩层倾角与边坡坡角条件有所降低,侧压力系数对变形趋势发挥主导作用,同样的水平地应力情况下,垂直地应力降低会导致变形有所增加。当存在较大水平地应力时,为保障安全,岩层倾角大于60°的反倾岩质边坡坡角建议不超过45°。
-
关键词:
- 反倾岩质边坡 /
- 初始地应力 /
- 变形 /
- 非连续变形分析(DDA)
Abstract: The initial geo-stress field is an important factor in the deformation and damage of anti-dip layered rock slopes. Based on the measured geo-stress data in the typical abutment slopes at certain western hydropower projects, nine geo-stress states are selected, and the deformations of the anti-dip rock slope model with different dip angles of rock stratum and slope angles are simulated by Discontinuous Deformation Analysis (DDA) method. Results show that, when taking the release of the initial geo-stress into account, the slope dip and slope angle conditions required for triggering the slope toppling would decrease, and the lateral pressure coefficient plays a dominant role in the deformation trend. Under the same horizontal geo-stress conditions, more lateral pressure coefficient would induce greater overall deformation of slopes. When large horizontal geo-stresses exist, slope angles of up to 45° are recommended to ensure safety when the dip angle exceeds 60°. -
-
[1] 蔡国军,裴钻.2007.反倾互层岩质边坡开挖物理模拟试验研究[J].水土保持研究,14(5):126-130.
[2] 程东幸,刘大安,丁恩保,赵红敏,潘炜,郭华锋.2005.层状反倾岩质边坡影响因素及反倾条件分析[J].岩土工程学报,27(11):1362-1366.
[3] 谷艳昌,郑东健,郭航忠,何鲜峰.2008.小湾水电站坝址区三维初始地应力场反演回归分析[J]. 岩土力学,29(4):1015-1020+1026.
[4] 韩贝传,王思敬.1999.边坡倾倒变形的形成机制与影响因素分析[J].工程地质学报,7(3):213-217.
[5] 韩晓玉,黄孝泉,李永松,尹健民,向家菠.2015.乌东德水电工程河谷地应力场分布规律[J].长江科学院院报,32(11):34-39.
[6] 贺琮栖,魏玉峰,王洋,梁彭,金磊磊.2022.层状边坡倾倒变形多级折断面分布深度计算模型[J].岩土力学,43(10):2809-2818.
[7] 何阳,徐定芳.2019.基于强度折减法的边坡安全预警及失稳判据研究[J].华南地质与矿产,35(3):343-347.
[8] 黄达,马昊,孟秋杰,宋宜祥.2020.软硬互层岩质反倾边坡弯曲倾倒离心模型试验与数值模拟研究[J].岩土工程学报,42(7):1286-1295.
[9] 黄少平,晏鄂川,尹晓萌,陈前,李兴明.2021.不同临空条件的层状反倾岩质边坡倾倒变形几何特征参数影响规律[J].地质科技通报,40(1):159-165.
[10] 蒋明镜,江华利,廖优斌,刘笋,王华宁.2019.不同形式节理的岩质边坡失稳演化离散元分析[J].同济大学学报(自然科学版),47(2):167-174.
[11] 金长宇,冯夏庭,张春生.2010.白鹤滩水电站初始地应力场研究分析[J].岩土力学,31(3):845-850+855.
[12] 冷先伦,盛谦,廖红建,熊俊,郭志华.2004.反倾层状岩质高边坡开挖变形破坏机理研究[J].岩石力学与工程学报,23(S1):4468-4472.
[13] 刘明.2014.锦屏一级水电站左岸边坡大规模开挖的地质—力学响应研究[D].成都理工大学博士学位论文.
[14] 刘泉声,蒋亚龙,何军.2017.非连续变形分析的精度改进方法及研究趋势[J].岩土力学,38(6):1746-1761.
[15] 刘云鹏,邓辉,陈卫东.2017.反向次生成层结构边坡稳定性影响因素的定量分析[J]. 桂林理工大学学报,37(3):466-474.
[16] 甯尤军,吕昕阳.2022.岩石力学与工程问题的DDA和NMM模拟研究进展[J].应用力学学报,39(4):657-672.
[17] 裴启涛,李海波,刘亚群.2012.南水北调西线工程坝区初始地应力场反演分析[J].岩土力学,33(S2):338-344.
[18] 司佳鹏,张常亮,赵猛,唐斌,李同录.2022.深切河谷岸坡层状岩体倾倒变形演化过程及机理分析[J].河南科学,40(7):1134-1144.
[19] 谭儒蛟,杨旭朝,胡瑞林,刘国权.2009.大型反倾库岸岩体变形过程及破坏机制数值模拟[J].工程地质学报,17(4):476-482.
[20] 谭明健,周春梅,孙东,周紫朝.2022.软硬互层顺层岩质边坡破坏试验[J].地质科技通报,41(2):274-281+324.
[21] 陶志刚,任树林,郝宇,李强,付强,何满潮.2021.层状反倾边坡破坏机制及NPR锚索控制效果物理模型试验[J].岩土力学,42(4):976-990.
[22] 王建明,陈忠辉,张凌凡,周子涵,秦凡,陈红杰.2020.反倾层状岩质边坡失稳的断裂力学分析[J].计算力学学报,37(1):75-82.
[23] 王立伟,谢谟文,尹彦礼,刘翔宇.2014.反倾层状岩质边坡倾倒变形影响因素分析[J].人民黄河,36(4):132-134.
[24] 位伟,段绍辉,姜清辉,漆祖芳,张房房.2008.反倾边坡影响倾倒稳定的几种因素探讨[J].岩土力学,29(S1):431-434.
[25] 谢红强,肖明砾,何江达,黄桢.2008.锦屏水电站坝区初始地应力场回归反演分析[J]. 长江科学院院报,25(5):50-54.
[26] 徐佩华,陈剑平,黄润秋,严明.2004.锦屏水电站解放沟反倾高边坡变形机制的探讨[J]. 工程地质学报,12(3):247-252.
[27] 杨豪,魏玉峰,裴向军,张御阳.2022.含陡缓倾结构面反倾岩坡折断面演化特征的离心试验研究[J].岩土力学,43(5):1215-1225.
[28] 杨忠平,刘树林,刘永权,何春梅,阳伟.2018.反复微震作用下顺层及反倾岩质边坡的动力稳定性分析[J].岩土工程学报,40(7):1277-1286.
[29] 殷跃平,王鲁琦,赵鹏,张枝华,黄波林,王雪冰.2022.三峡库区高陡岸坡溃屈失稳机理及防治研究[J].水利学报,53(4):379-391.
[30] 赵德安,陈志敏,蔡小林,李双洋.2007.中国地应力场分布规律统计分析[J].岩石力学与工程学报,26(6):1265-1271.
[31] 周艳松,易春瑶,莫春雷,曾洋.2022.襄阳市三顾路路堑边坡滑坡成因及防治措施分析[J].资源环境与工程,36(2):181-185.
[32] Chen Z Y, Gong W J, Ma G W, Wang J, He L, Xing Y C, Xing J Y. 2015. Comparisons between centrifuge and numerical modeling results for slope toppling failure [J]. Science China Technological Sciences, 58(9): 1497-1508.
[33] Dong M L, Zhang F M, Lv J Q, Fei Y, Li Z N. 2020. Study of Stability Influencing Factors of Fxcavated Anti-Dip Rock Slope [J]. KSCE Journal of Civil Engineering, 24 (8): 2293-2303.
[34] Goodman R E, Bray J W. 1976. Toppling of Rock Slopes[C]. M.ASCE/Boulder. Proceeding of the Specialty Conference on Rock Engineering for Foundations and Slopes. Colorado, 201-234.
[35] MacLaughlin M M, Doolin D M. 2006. Review of validation of the discontinuous deformation analysis (DDA) method [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 30(4):271-305.
[36] Shi G H. 1988. Discontinuous deformation analysis: A new numerical model for the statics and dynamics of block systems [D]. Department of Civil Engineering University of California, Berkeley.
-
计量
- 文章访问数: 530
- PDF下载数: 214
- 施引文献: 0