The Relationship Between the Opal Precipitation and the Key Metal Mineralization: A Review
-
摘要: 铍、铯、铀等关键金属是支撑高新技术产业与尖端国防科技发展的战略性金属资源,其矿床的成因机制研究一直备受各国学者关注。研究发现,在一些关键金属矿床中均发育有蛋白石矿物,且蛋白石的形成与Be、Cs、U等金属元素的富集密切相关。这些关键金属的富集机制与蛋白石的成因、多相转化以及蛋白石中的微生物作用息息相关,这种关系主要表现在:(1)蛋白石成因与结晶相转化机制控制着关键金属元素的赋存形式、迁移机制与沉淀机制;(2)含铀蛋白石的年代学与硅氧同位素可以示踪关键金属成矿时代与沉淀的物理化学环境;(3)蛋白石中的微生物群落可以为关键金属元素的富集提供合适的氧化还原环境。蛋白石的矿物学、地球化学及其中的微生物成矿作用可以厘定关键金属矿床的成矿时代,示踪关键金属矿床的成矿物质来源,探讨关键金属矿床的成因机制。未来关键金属矿床中蛋白石的研究可以为低温环境下关键金属的富集成矿提供重要的科学依据。Abstract: Key metals such as beryllium, cesium and uranium are strategic metal resources that support the development of high-tech industry and cutting-edge national defense science and technology. It is found that the formation of opal in key metal deposits is closely related to the enrichment of Be, Cs, U and other metal elements, and the enrichment mechanism of these key metals is closely related to the genesis of opal, polyphase transformation and microbial action in opal, which are mainly manifested in: (1) Opal origin and crystal phase transformation mechanism control the occurrence form, migration mechanism and precipitation mechanism of key metal elements; (2) The chronology and Si-O isotope of uraniferous opal can trace the metallogenic age of key metals and the physical and chemical environment of precipitation; (3) Microorganisms in opal can provide a suitable oxidation-reduction environment for the enrichment of key metal elements. The mineralogy, geochemistry and microbial mineralization of opal indicate that the genesis of opal has important scientific significance for revealing the ore-forming age of key metal deposits, tracing the source of ore-forming materials of key metal deposits, exploring the genetic mechanism of key metal deposits, and establishing the ore-forming model of key metal deposits. Opal as a tracer mineral would play an increasingly important role in the study of key metal deposits.
-
Key words:
- opal /
- key metal /
- metallogenic mechanism /
- microbial mineralization
-
-
[1] 陈丰.2019.蛋白石——新型的光子晶体[J].矿物学报,39(1):23-30.
[2] 陈天虎,徐晓春, Xu H F,岳书仓.2005.苏皖坡缕石粘土中蛋白石特征及其成因意义[J].矿物学报,25(1):81-88.
[3] 李晓峰,王果,朱艺婷,张龙.2022.火山岩型铀铍矿床——以新疆白杨河大型铀铍矿床为例[M].北京:科学出版社,1-251.
[4] 李振清.2002.青藏高原碰撞造山过程中的现代热水活动[D].中国地质科学院博士学位论文,1-88.
[5] 王海雷.2006.西藏地热区微生物对铯的吸附及其对铯硅华成矿的贡献[D].中国地质科学院博士学位论文,1-99.
[6] 王江海,颜文,常向阳,解广轰,邱华宁,董金泉,张丽彦.1998.陆相热水沉积作用-以云南地区为例[M].北京:地质出版社,1-131.
[7] 王士艳.2008.十红滩铀矿床中参与S、Fe 地球化学循环的微生物分布及其成矿作用研究[D].西北大学硕士学位论文,1-60.
[8] 王微.2020.藏南-腾冲地热区富关键金属热泉的地球化学和硅同位素示踪研究[D].中国地质大学博士学位论文,1-118.
[9] 阎葆瑞,张锡根.2000.微生物成矿学[M].北京:科学出版社,1-171.
[10] 张健,宋晗,邓洪,党志,程宏飞,林璋.2018.铀与微生物相互作用研究进展[J].矿物岩石地球化学通报,37(1):55-62+158-159.
[11] 张天乐,王宗良,胡云中.1997.腾冲现代热泉系统硅华的矿物学特征及其地质意义[J]. 岩石矿物学杂志,16(2):170-179.
[12] 赵元艺,樊兴涛,韩景仪,邓坚,赵希涛.2009.西藏谷露热泉型铯矿床地质地球化学特征与成矿作用[J].地质通报,28(7):933-954.
[13] 赵元艺,韩景仪,郭立鹤,钱作华,周永章,聂凤军,李振清.2008.西藏搭格架热泉型铯矿床矿物学与矿石组构特征及地质意义[J].岩石学报,24(3):519-530.
[14] 赵元艺,赵希涛,马志邦.2006a.西藏搭格架热泉型铯矿床年代学研究[J].岩石学报,22(3):717-724.
[15] 赵元艺,聂凤军,侯增谦,李振清,赵希涛,马志邦.2006b.西藏搭格架热泉型铯矿床地质特征及形成时代[J].矿床地质,25(3):281-291.
[16] 赵元艺,聂凤军,侯增谦,李振清,赵希涛,马志邦.2007.西藏搭格架热泉型铯矿床地球化学[J]. 矿床地质,26(2):163-174.
[17] 赵元艺,赵希涛,马志邦,邓坚.2010.西藏谷露热泉型铯矿床年代学及意义[J].地质学报,84(2):211-220.
[18] 郑绵平,王秋霞,多吉,刘杰,平措旺杰,张苏春.1995.水热成矿新类型——西藏铯硅华矿床[M].北京:地质出版社,2-24.
[19] 郑辙,Reeder R J.1986.蛋白石硅质岩中二氧化硅相的实验研究[J].矿物学报,6(3):258-265+294.
[20] 朱艺婷,李晓峰,张龙,王果,张迪.2019.新疆白杨河U-Be 矿床中电气石的矿物学特征及其成矿指示[J].岩石学报,35(11):3429-3442.
[21] Akob D M, Lee S H, Sheth M, Kusel K, Watson D B, Palumbo A V, Kostka J E, Chin K J. 2012. Gene expression correlates with process rates quantified for sulfate-and Fe (Ⅲ)-reducingbacteriainU(VI)-contaminatedsediments[J]. Frontiers in Microbiology, 3: 280.
[22] Allard T, Ildefonse P, Beaucaire C, Calas G. 1999. Structural chemistry of uranium associated with Si, Al, Fe gels in a granitic uranium mine[J]. Chemical Geology, 158: 81-103.
[23] Amelin Y, Back M. 2006. Opal as a U-Pb geochronometer: Search for a standard[J]. Chemical Geology, 232(1-2): 67-86.
[24] Ames L L, McGarrah J E, Walker B A. 1983. Sorption of trace constituents from aqueous solutions onto secondary minerals. I. Uranium[J]. Clays and Clay Minerals, 31: 321-334.
[25] Baik M H, Hahn P S. 2001. Experimental study on Uranium sorption onto silica colloids: Effects of geochemical parameters [J]. Journal of the Korean Nuclear Society, 33: 261-269.
[26] Barton M D, Young S. 2002. Non-pegmatitic deposits of beryllium: Mineralogy, geology, phase equilibria and origin [J]. Reviews in Mineralogy and Geochemistry, 50: 591-691.
[27] Choudhary S, Sar P. 2015. Interaction of uranium (VI) with bacteria: potential applications in bioremediation of U contaminated oxic Envir-onments[J]. Reviews in Environmental Science and Bio/Technology, 14(3): 347-355.
[28] Curtis N J, Gascooke J, Johnston M R, Pring A. 2019. A Review of the Classification of Opal with Reference to Recent New Localities[J]. Minerals, 9(5): 299.
[29] Dailey S R, Christiansen E H, Dorais M J, Kowallis B J, Fernandez D P, Johnson D M. 2018. Origin of the fluorineand beryllium-rich rhyolites of the Spor Mountain Formation, Western Utah[J]. American Mineralogist, 103(8): 1228-1252.
[30] Devès G, Perroux A S, Bacquart T, Plaisir C, Rose J, Jaillet S, Ghaleb B, Ortega R, Maire R. 2012. Chemical element imaging for speleothem geochemistry: Application to a uranium-bearing corallite with aragonite diagenesis to opal (Eastern Siberia, Russia) [J]. Chemical Geology, 294-295: 190-202.
[31] Dugger D L, Stanton J H, Irby B N, McConell B L, Cummings WW, Maatman R W. 1964. The exchange of twenty metal ions with the weakly acidic silanol group of silica gel[J]. Journal of Physical Chemistry, 68: 757-760.
[32] Dutkiewicz A, Thomas C W, Landgrebe, Rey P F. 2015. Origin of silica and fingerprinting of Australian sedimentary opals[J]. Gondwana Research, 27(2): 786-795.
[33] Foley N K, Ayuso R A. 2013. Rare earth element mobility in high-alumina altered metavolcanic deposits, South Carolina, USA[J]. Journal of Geochemical Exploration, 133: 50-67.
[34] Foley N K, Hofstra A H, Lindsey D A, et al. 2012. Occurrence model for volcanogenic beryllium deposits: Chapter F[R]//Mineral deposit models for resource assessment (No. 2010-5070-F). US Geological Survey. Scientific Investigation Repot, 2010-5070-F.
[35] Gabriel U, Charlet L, Schlaipfer C W, Vial J C, Brachmann A, Geipel G. 2001. Uranyl surface speciation on silica particles studied by time-resolvedlaser-induced fluorescence spectroscopy[J]. Journal of Colloid and Interface Science, 239: 358-368.
[36] Gregory K B, Lovley D R. 2005. Remediation and recovery of uranium from contaminated subsurface Environments with electrodes[J]. Environmental Science & Technology, 39(22): 8943-8947.
[37] Herdianita N R, Browne P R L, Rodgers K A, Campbell K A. 2000. Mineralogical and textural changes accompanying ageing of silica sinter[J]. Mineralium Deposita, 35(1): 48-62.
[38] Hinman N W. 1998. Sequences of silica phase transitions: effects of Na, Mg, K, Al, and Fe ions[J]. Marine Geology, 147: 13-24.
[39] Jones B, Renaut R W. 2007. Microstructural changes accompanying the opal-A to opal-CT transition: new evidence from the siliceous sinters of Geysir,Haukadalur, Iceland[J]. Sedimentology, 54: 921-948.
[40] Jones J B, Segnit E R. 1971. The nature of Opal I. Nomenclature and constituent phases[J]. Journal of the Geological Society of Australia, 18(1): 57-68.
[41] Karacik Z, Genc S C, Esenli F, Goller G. 2011. The Gümüldür Fire Opal: Mode of Occurrence and Mineralogical Aspects[J]. Turkish Journal of Earth Sciences, 20(1): 99-114.
[42] Kastner M, Keene J B, Gieskes J M. 1977. Diagenesis of siliceous oozes-1: chemical controls on the rate of Opal-A to Opal-CT transformation- an experimental study[J]. Geochimica et Cosmochimica Acta, 41: 1041-1059.
[43] Kita I, Taguchi S, Matsubaya O. 1985. Oxygen isotope fractionation between amorphous silica and water at 34-93℃ [J]. Nature, 314: 83-84.
[44] Langer K, Klorke O W. 1974. Near infrared absorption spectra ( 4000-9000 cm-1) of opals and the role of “water”in these SiO2·H2O minerals[J]. Fortschritte der Mineralogie, 52: 17-51.
[45] Li X L, Ding C C, Liao J L, Du L, Sun Q, Yang J J, Yang Y Y, Zhang D, Tang J, Liu N. 2017. Microbial reduction of uranium (VI) by Bacillus sp. DWC-2: A macroscopic and spectroscopic study[J]. Journal of Environmental Sciences, 53: 9-15.
[46] Liesegang M, Milke R. 2014. Australian sedimentary opal-A and its associated minerals: Implications for natural silica sphere formation[J]. American Mineralogist, 99: 1488-1499.
[47] Lindsey D A. 1977. Epithermal beryllium deposits in Water-Laid Tuff, Western Utah[J]. Economic Geology, 72: 219-232.
[48] Lovley D R, Phillips E J P, Gorby YA, Landa E. 1991. Microbial reduction of uranium[J]. Nature, 350(6317): 413-416.
[49] Lovley D R, Widman P K, Woodward J C, Phillips E J. 1993. Reducion of uranium by cylochrome c3 of Desulfovibrio vulgaris[J]. Appliedand Environmental Microbiology, 59(11): 3572-3576.
[50] Lowenstern J B, Hinsberg V V, Berlo K, Liesegang M, Iacovino K, Bindeman I N, Wright H M. 2018. Opal-A in Glassy Pumice, Acid Alteration, and the 1817 Phreatomagmatic Eruption at Kawah Ijen (Java), Indonesia[J]. Original Research, 6:11.
[51] Ludwig K R, Lindsey R A, Zielinski, Simmons K R. 1980. U-Pb ages of uranium-bearing opals from Spor Mountain, Utah, and their implications for beryllium, fluorine, and uranium metallogenic history[J]. Earth and Planetary Science Letters, 46: 221-232.
[52] Lynne B Y, Campbell K A, Perry R S, Browne P R L, Moore J N. 2006. Acceleration of sinter diagenesis in an active fumarole, Taupo volcanic zone, New Zealand[J]. Geology, 34(9): 749-752.
[53] Massey M S, Lezama-Pacheco J S, Nelson J M, Fendorf S, Maher K. 2014. Uranium incorporation into amorphous silica[J]. Environmental Science & Technology, 48: 8636-8644.
[54] Michard P, Guibal E, Vincent T, Le-Cloirec P. 1996. Sorption and desorption of uranyl ions by silica gel: pH, particle size and porosity effects[J]. Microporous Materials, 5: 309-324.
[55] Nagase T, Akizuki M. 1997. Texture and structure of Opal-CT and Opal-C in volcanic rocks[J]. Canadian Mineralogist, 35(4): 947-958.
[56] Nemchin A A, Neymark L A, Simons S L. 2006. U-Pb SHRIMP dating of uraniferous opals[J]. Chemical Geology, 227(1-2): 113-132.
[57] Neymark, L. 2014. Uranium-Lead Dating, Opal. In: Rink W, Thompson J. (eds) Encyclopedia of Scientific Dating Methods[M]. Springer, Dordrecht, 909-917.
[58] Neymark L A, Amelin Y V. 2008. Natural radionuclide mobility and its influence on U-Th-Pb dating of secondary minerals from the unsaturated zone at Yucca Mountain, Nevada[J]. Geochimica et Cosmochimica Acta, 72(8): 2067-2089.
[59] Neymark L A, Amelin Y V. Paces J B, Peterman Z E. 2002. U-Pb ages of secondary silica at Yucca Mountain, Nevada: implications for the paleohydrology of the unsaturated zone[J]. Applied Geochemistry, 17(6): 709-734.
[60] Neymark L A, Amelin Y V, Paces J B. 2000. 206Pb-230Th-234U-238U and 207Pb-235U geochronology of Quaternary opal, Yucca Mountain, Nevada[J]. Geochimica et Cosmochimica Acta, 64(17): 2913-2928.
[61] Neymark L A, Paces J B. 2013. Ion-probe U-Pb dating of authigenic and detrital opal from Neogene-Quaternary alluvium[J]. Earth and Planetary Science Letters, 361(1): 98-109.
[62] Othmane G, Allard T, Vercouter T, Morin G, Fayek M, Calas G. 2016. Luminescence of uranium-bearing opals: Origin and use as a pH record[J]. Chemical Geology, 423: 1-6.
[63] Paces J B, Neymark L A, Marshall B D, Whelan J F, Peterman Z E. 2001. Ages and origins of calcite and opal in the exploratory studies facility tunnel, Yucca Mountain, Nevada, U.S.[R]. Geological Survey Water-Resource Investment Report 01-4049, p 95.
[64] Paces J B, Neymark L A, Whelan J F, Wooden J L, Lund S P, Marshall B D. 2010. Limited hydrologic response to Pleistocene climate change in deep vadose zones -Yucca Mountain, Nevada[J]. Earth and Planetary Science Letters, 300(3-4): 287-298.
[65] Paces J B, Neymark L A, Wooden J L, Persing H M. 2004. Improved spatial resolution for U-series dating of opal at Yucca Mountain, Nevada, U.S.A., using ion-microprobe and microdigestion methods[J]. Geochimica et Cosmochimica Acta, 68: 1591-1606.
[66] Petersen S, Herzig P M, Schwarz-Schampera U, Hannington M D, Jonasson I R. 2004. Hydrothermal precipitates associated with bimodal volcanism in the Central Bransfield Strait, Antarctica[J]. Mineralium Deposita, 39: 358-379.
[67] Phoenix V R, Konhauser K O, Ferris F G. 2003. Experimental study of iron and silica immobilization by bacteria in mixed Fe-Si systems: Implications for microbial silicification in hot springs[J]. Canadian Journal of Earth Sciences. 40: 1669-1678.
[68] Reguera G, Mccarthy K D, Mehta T, Nicoll J S, Tuominen M T, Lovley D R. 2005. Extracellular electron transfer via microbial nanowires[J]. Nature, 435(7045): 1098-1101.
[69] Rice S B, Freund H, Huang W L, Clouse J A, Isaacs C M. 1995. Application of fourier transform infrared spectroscopy to silica diagenesis: the Opal-A to Opal CT transformation[J]. Journal of sedimentary research, 65(4): 639-647.
[70] Saminpanya S, Sutherland F L. 2013. Silica phase-transformations during diagenesis within petrified woods found in fluvial deposits from Thailand-Myanmar[J]. Sedimentary Geology, 290: 15-26.
[71] Schindler M, Fayek M, Courchesne B, Kyser K, Hawthorne F C. 2017. Uranium-bearing opals: Products of U-mobilization, diffusion, and transformation processes[J]. American Mineralogist, 102(6): 1154-1164.
[72] Siever R. 1962. Silica solubility, 0-200℃., and the diagenesis of siliceous sediments[J]. The Journal of Geology, 70(2): 127-150.
[73] Sivaswamy V, Boyanov M I, Peyton B M, Viamajala S, Gerlach R, Apel W A, Sani R K, Dohnalkova A, Kemner K M, Borch T. 2011. Multiple mechanisms of uranium immobilization by Cellulomonas sp. strain ES6[J]. Biotechnology and Bioengineering, 108(2): 264-276.
[74] Soderholm L, Skanthakumar S, Gorman-Lewis D, Jensen M P, Nagy K L. 2008. Characterizing solution and solid-phase amorphous uranyl silicates[J]. Geochimica et Cosmochimica Acta, 72: 140-150.
[75] Stirling C H, Andersen M B, Warthmann R, Halliday A N. 2015. Isotope fractionation of 238U and 235U during biologically-mediated uranium reduction[J]. Geochimica et Cosmochimica Acta, 163: 200-218.
[76] Tran H H, Roddick F A, O’Donnell J A. 1999. Comparison of chromatography and desiccant silica gels for the adsorption of metal ions—I. adsorption and kinetics. Adsorption and kinetics[J].Water Research, 33: 2992-3000.
[77] Umeda M. 2003. Precipitation of silica and formation of chert-mudstone-peat association in Miocene coastal environments at the opening of the Sea of Japan[J]. Sedimentary Geology, 161(3-4): 249-268.
[78] Varkouhi S, Tosca N J, Cartwright J A. 2021. Temperature-time relationships and their implications for thermal history and modelling of silica diagenesis in deep-sea sediments[J]. Marine Geology, 439: 106541.
[79] Whelan J F, Neymark L A, Moscati R J, Marshall B D, Roedder E. 2008. Thermal history of the unsaturated zone at Yucca Mountain, Nevada, USA[J]. Applied Geochemistry. 23: 1041-1075.
[80] Williams L A, Crerar D A. 1985. Silica diagenesis, II. General mechanisms[J]. Journal of Sedimentary Petrology, 55: 312-321.
[81] Wilson N S F, Cline J S, Amelin Y V. 2003. Origin, timing, and temperature of secondary calcite-silica mineral formation at Yucca Mountain, Nevada[J]. Geochimica et Cosmochimica Acta, 67: 1145-1176.
[82] Zeng Z G, Niedermann S, Chen S, Wang X Y, Li Z X. 2015. Noble gases in sulfide deposits of modern deep-sea hydrothermal systems: Implications for heat fluxes and hydrothermal fluid processes[J]. Chemical Geology, 409: 1-11.
[83] Zheng Y F. 1991. Calculation of oxygen isotope fractionation in metal oxides[J]. Geochimica et Cosmochimica Acta, 55: 2299-2307.
[84] Zielinski R A. 1980. Uranium in secondary silica: A possible exploration guide[J]. Economic Geology, 75: 592-602.
-
计量
- 文章访问数: 650
- PDF下载数: 172
- 施引文献: 0