Petrogenesis and Tectonic Implication of the Early Paleozoic Highly Fractionated Granites in the Xinlin Region, the Northern Great Xing’an Range, NE China
-
摘要: 大兴安岭北段的早古生代岩浆活动主要集中分布于新林-喜桂图缝合带东北缘漠河、塔河等地,而该时期缝合带西南缘的岩浆活动报道甚少,研究相对薄弱。本文以新林地区构造混杂岩带中的花岗岩脉为研究对象,开展了系统的岩石学、锆石U-Pb年代学、地球化学和Hf 同位素分析,以探讨岩石成因和构造意义。岩脉岩性以正长花岗岩为主,二长花岗岩次之。锆石LA-ICP-MS U-Pb 定年结果表明,正长花岗岩的成岩年龄为502±2 Ma,属于早古生代岩浆活动的产物。地球化学分析显示,岩石具高硅(SiO2含量为74.25%~75.60%)、富碱(碱含量介于7.30%~8.22%之间),贫铁、镁、钙、钛、磷,高钾钙碱性,过铝质,中等负Eu异常的特征;富集Rb、K、Th 等大离子亲石元素,亏损Ba、Sr,贫Zr、Hf、Nb、Ta、Ti 等高场强元素,10000×Ga/Al 值和Zr+Nb+Ce+Y值均低于A型花岗岩的下限值,锆石饱和温度(696~718℃)较低,P2O5与SiO2呈负相关性,Rb/Sr、Rb/Ba 和K/Rb等比值均较低,指示其为高分异I 型花岗岩。岩浆锆石的εHf (t)值变化于范围较大,为-12.9 ~ +2.9,表明其源区可能为不均一的地壳源区,且以中―新元古代新生地壳为主。岩浆锆石两阶段模式年龄反映额尔古纳地块在古元古代和中―新元古代期间曾发生两次重要的地壳增生事件。结合区域地质背景,本文认为该岩脉形成于后造山构造环境,其成因可能与额尔古纳地块和兴安地块碰撞结束后加厚的岩石圈构造伸展垮塌过程中幔源岩浆底侵引起地壳部分熔融有关。Abstract: The early Paleozoic magmatic activity in the Northern Great Xing’an Range is mainly distributed in Mohe, Tahe, and other places on the northeast edge of the suture zone from Xinlin to Xigui area, during which there are few reports of magmatic activity in the southwestern margin of the suture zone and relatively less relevant research. The granite veins in the tectonic melange belt of Xinlin area are the research object, and systematic petrological, zircon U-Pb chronology, geochemistry, Hf isotope, and genetic studies have been conducted to illustrate the petrogenesis and tectonic implication. The lithology of the dike is mainly syenite granite, with a small amount of monzogranite distributed. LA-ICP-MS U-Pb zircon analysis yields 206Pb/238U weighted mean age of 502±2 Ma for the syenite granites, which indicates they formed at the early Paleozoic. Geochemical analysis shows that the granites have high SiO2 (between 74.25% and 75.60%), rich alkali (between 7.30% and 8.22%) and low TFeO, MgO, CaO, TiO2, P2O5. They are characterized by high potassium calcium alkaline, peraluminous, and moderate negative europium anomalies. The rocks enriched in LILEs (Rb, K and Th), but depleted in Ba and Sr, and also depleted in HFSEs (Zr, Hf, Nb, Ta, and Ti). Both the 10000Ga/Al value and the Zr+Nb+Ce+Y value are lower than the lower limit of A-type granite, and the zircon saturation temperature is relatively low (between 696℃ and 718℃). The P2O5 and SiO2 of the rocks are negatively correlated, with lower Rb/Sr, Rb/Ba, and K/Rb ratios, indicating that they belong to highly fractionated I-type granites. The εHf (t) value of magmatic zircons varies from -12.9 to +2.9, indicating the involvement of inhomogeneous crust derived in the diagenetic process and mainly from Meso-Neoproterozoic period. The two-stage Hf model ages range from 1.28 to 2.28 Ga, reflecting two important crustal accretion events in the Erguna block during the Paleoproterozoic and Meso-Neoproterozoic periods. Based on the regional geological background, this paper believes that the dike was formed in a post orogenic tectonic environment, and its genesis may be related to the partial melting of the crust caused by the underplating of mantle derived magma during the tectonic extension and collapse of the thickened lithosphere after the collision between the Erguna and Xing'an blocks.
-
Key words:
- highly fractionated I-type granites /
- zircon U-Pb chronology /
- geochemistry /
- Hf isotopes /
- petrogenesis
-
-
[1] 表尚虎,李仰春,何晓华,周兴福,马丽玲.1999.黑龙江省塔河绿林林场一带兴华渡口群岩石地球化学特征[J].中国区域地质,18(1):28-33.
[2] 表尚虎,郑卫政,周兴福.2012.大兴安岭北部锆石U-Pb 年龄对额尔古纳地块构造归属的制约[J].地质学报,86(8):1262-1272.
[3] 董玉, 王锶淼, 于倩, 陈井胜, 杨浩, 葛文春, 毕君辉, 井佳浩.2022.中国东北地区晚古生代构造-岩浆演化历史[J].岩石学报,38(8):2249-2276.
[4] 冯志强.2015.大兴安岭北段古生代构造-岩浆演化[D].吉林大学博士学位论文.
[5] 葛文春,隋振民,吴福元,张吉衡,徐学纯,程瑞玉.2007.大兴安岭东北部早古生代花岗岩锆石U-Pb 年龄、Hf 同位素特征及地质意义[J].岩石学报,23(2):423-440.
[6] 葛文春,吴福元,周长勇,Rahman AAA. 2005a.大兴安岭北部塔河花岗岩体的时代及对额尔古纳地块构造归属的制约[J].科学通报,50(12):1239-1247.
[7] 葛文春,吴福元,周长勇,张吉衡.2005b.大兴安岭中部乌兰浩特地区中生代花岗岩的锆石U-Pb 年龄及地质意义[J].岩石学报,21(3):749-762.
[8] 黑龙江省地质矿产局第二区域地质调查大队三队.1985. 1∶20 万区域地质调查报告塔源幅[R].
[9] 洪大卫,王式洸,谢锡林,张季生,王涛.2003.从中亚正εNd值花岗岩看超大陆演化和大陆地壳生长的关系[J].地质学报,77(2):203-209.
[10] 李锦轶,莫申国,和政军,孙桂华,陈文.2004.大兴安岭北段地壳左行走滑运动的时代及其对中国东北及邻区中生代以来地壳构造演化重建的制约[J]. 地学前缘,11(3):157-168.
[11] 李双林,欧阳自远.1998.兴蒙造山带及邻区的构造格局与构造演化[J].海洋地质与第四纪地质,18(3):45-54.
[12] 李文国.1996.内蒙古自治区岩石地层[M].武汉:中国地质大学出版社.
[13] 刘昌实,陈小明,陈培荣,王汝成,胡欢.2003. A 型岩套的分类、判别标志和成因[J].高校地质学报,9(4):573-591.
[14] 路远发,李文霞.2021a. CIPW 标准矿物计算方法与程序设计[J].华南地质,37(3):348-360.
[15] 路远发,李文霞.2021b.花岗岩类自然矿物岩石化学换算及程序设计[J].华南地质,37(4):445-457.
[16] 苗来成,范蔚茗,张福勤,刘敦一,简平,施光海,陶华,石玉若.2003. 小兴安岭西北部新开岭- 科洛杂岩锆石SHRIMP 年代学研究及其意义[J]. 科学通报,48(22):2315-2323.
[17] 苗来成,刘敦一,张福勤,范蔚茗,石玉若,颉颃强.2007.大兴安岭韩家园子和新林地区兴华渡口群和扎兰屯群锆石SHRIMP U-Pb年龄[J].科学通报,52(5):591-601.
[18] 内蒙古自治区地质矿产局.1991.内蒙古自治区区域地质志[M].北京:地质出版社.
[19] 秦江锋,赖绍聪,李永飞,白莉,王娟.2005.扬子板块北缘阳坝岩体锆石饱和温度的计算及其意义[J].西北地质,38(3):1-5.
[20] 秦秀峰,尹志刚,汪岩,郭原生,刘旭光,周世强.2007.大兴安岭北端漠河地区早古生代埃达克质岩特征及地质意义[J].岩石学报,23(6):1501-1511.
[21] 邱检生,肖娥,胡建,徐夕生,蒋少涌,李真.2008.福建北东沿海高分异Ⅰ型花岗岩的成因:锆石U-Pb年代学、地球化学和Nd-Hf同位素制约[J].岩石学报,24(11):2468-2484.
[22] 佘宏全,李进文,向安平,关继东,杨郧城,张德全,谭刚,张斌.2012.大兴安岭中北段原岩锆石U-Pb 测年及其与区域构造演化关系[J].岩石学报,28(2):571-594.
[23] 施光海,苗来成,张福勤,简平,范蔚茗,刘敦一.2004.内蒙古锡林浩特A型花岗岩的时代及区域构造意义[J].科学通报,49(4):384-389.
[24] 隋振民,葛文春,吴福元,徐学纯,王清海.2006.大兴安岭东北部哈拉巴奇花岗岩体锆石U-Pb 年龄及其成因[J].世界地质,25(3):229-236.
[25] 隋振民,葛文春,徐学纯,张吉衡.2009.大兴安岭十二站晚古生代后造山花岗岩的特征及其地质意义[J].岩石学报,25(10):2679-2686.
[26] 隋振民.2007.大兴安岭东北部花岗岩类锆石U-Pb 年龄、岩石成因及地壳演化[D].吉林大学博士学位论文.
[27] 孙德有,吴福元,李惠民,林强.2000.小兴安岭西北部造山后A型花岗岩的时代及与索伦山-贺根山-扎赉特碰撞拼合带东延的关系[J].科学通报,45(20):2217-2222.
[28] 孙立新,任邦方,赵凤清,彭丽娜.2012.额尔古纳地块太平川巨斑状花岗岩的锆石U-Pb 年龄和Hf 同位素特征[J].地学前缘,19(5):114-122.
[29] 唐杰.2016.额尔古纳地块中生代火成岩的年代学与地球化学:对蒙古-鄂霍茨克缝合带构造演化的制约[D].吉林大学博士学位论文.
[30] 王强,赵振华,简平,熊小林,包志伟,戴橦谟,许继峰,马金龙.2005.华南腹地白垩纪A型花岗岩类或碱性侵入岩年代学及其对华南晚中生代构造演化的制约[J].岩石学报,21(3):795-808.
[31] 吴福元,曹林.1999.东北亚地区的若干重要基础地质问题[J].世界地质,18(2):4-16.
[32] 吴福元,李献华,杨进辉,郑永飞.2007.花岗岩成因研究的若干问题[J].岩石学报,23(6):1217-1238.
[33] 吴福元,刘小驰,纪伟强,王佳敏,杨雷.2017.高分异花岗岩的识别与研究[J].中国科学:地球科学47(7):745-765.
[34] 武广,孙丰月,赵财胜,李之彤,赵爱琳,庞庆帮,李广远.2005.额尔古纳地块北缘早古生代后碰撞花岗岩的发现及其地质意义[J].科学通报,50(20):2278-2288.
[35] 徐备,赵盼,鲍庆中,周永恒,王炎阳,罗志文.2014.兴蒙造山带前中生代构造单元划分初探[J]. 岩石学报,30(7):1841-1857.
[36] 杨文麟,骆满生,王成刚,徐增连.2014.兴蒙造山系新元古代-古生代沉积盆地演化[J].地球科学—中国地质大学学报,39(8):1155-1168.
[37] 于倩.2017.兴安地块晚古生代-早中生代侵入岩的成因及其地质意义[D].吉林大学博士学位论文.
[38] 张丽,刘永江,李伟民,韩国卿,张金带,郭庆银,李长华.2013.关于额尔古纳地块基底性质和东界的讨论[J].地质科学,48(1):227-244.
[39] 张旗,金惟俊,李承东,王元龙.2010.再论花岗岩按照Sr-Yb的分类:标志[J].岩石学报,26(4):985-1015.
[40] 张旗,王焰,李承东,金惟俊,贾秀勤.2006.花岗岩按照压力的分类[J].地质通报,25(11):1274-1278.
[41] 张旗.2013.A 型花岗岩的标志和判别-兼答汪洋等对“A型花岗岩的实质是什么”的质疑[J].岩石矿物学杂志,32(2):267-274.
[42] 张克信,潘桂棠,何卫红,肖庆辉,徐亚东,张智勇,陆松年,邓晋福,冯益民,李锦轶,赵小明,邢光福,王永和,尹福光,郝国杰,张长捷,张进,龚一鸣.2015.中国构造-地层大区划分新方案[J]. 地球科学— 中国地质大学学报,40(2):206-233.
[43] 张梅生,彭向东,孙晓猛.1998.中国东北区古生代构造古地理格局[J].辽宁地质,(2):91-96.
[44] 张兴洲,杨宝俊,吴福元,刘国兴.2006.中国兴蒙-吉黑地区岩石圈结构基本特征[J].中国地质,33(4):816-823.
[45] 张彦龙,葛文春,柳小明,张吉衡.2008.大兴安岭新林镇岩体的同位素特征及其地质意义[J].吉林大学学报(地球科学版),38(2):177-186.
[46] 赵硕,许文良,王枫,王伟,唐杰,张一涵.2016.额尔古纳地块新元古代岩浆作用:锆石U-Pb年代学证据[J].大地构造与成矿学,40(3):559-573.
[47] 赵芝,迟效国,刘建峰,王铁夫,胡兆初.2010a.内蒙古牙克石地区晚古生代弧岩浆岩:年代学及地球化学证据[J].岩石学报,26(11):3245-3258.
[48] 赵芝,迟效国,潘世语,刘建峰,孙巍,胡兆初.2010b.小兴安岭西北部石炭纪地层火山岩的锆石LA-ICP-MS U-Pb 年代学及其地质意义[J].岩石学报,26(8):2452-2464.
[49] 赵芝.2011.大兴安岭北部晚古生代岩浆作用及其构造意义[D].吉林大学博士学位论文.
[50] 郑吉林,刘涛,徐立明,梁中恺,郭晓宇,王大可,孙靖尧.2020.大兴安岭嘎仙蛇绿混杂岩中超镁铁质岩地球化学、年代学特征及其地质意义[J].地质通报,39(4):480-490.
[51] 周建波,张兴洲,Simon AW,郑常青,金魏,陈红,韩杰.2009.黑龙江杂岩的碎屑锆石年代及其大地构造意义[J].岩石学报,25(8):1924-1936.
[52] 周长勇,吴福元,葛文春,孙德有,Rahman AAA,张吉衡,程瑞玉.2005.大兴安岭北部塔河堆晶辉长岩体的形成时代、地球化学特征及其成因[J].岩石学报,21(3):763-775.
[53] 朱永峰,张云迪,蒋久阳,陆国隆.2022.兴蒙造山带中与古亚洲洋演化有关的成矿系统初步研究[J].矿床地质,41(3):449-468.
[54] Blundy J D, Shimizu N.1991. Trace element evidence for plagioclase recycling in calc-alkaline magmas[J]. Earth and Planetary Science Letters, 102(2):178-197.
[55] Buslov M M, Saphonova I Y, Watanabe T, Obut O T, Fujiwara Y, Iwata K, Semakov N N, Sugai Y, Smirnova L V, Kazansky A Y. 2001. Evolution of the Paleo-Asian Ocean (Altai-Sayan Region, Central Asia) and collision of possible Gondwana-derived terranes with the southern marginal part of the Siberian continent[J]. Geosciences Journal, 5(3):203-224.
[56] Chappell B W, White A J R. 1992. I-and S-Type Granites in the Lachlan Fold Belt[J]. Transactions of the Royal Society of Edinburgh: Earth Sciences, 83(1-2):1-26.
[57] Chen B, Jahn B M, Wilde S, Xu B. 2000. Two contrasting Paleozoic magmatic belts in northern Inner Mongolia, China: petrogenesis and tectonic implications[J]. Tectonophysics, 328(1-2): 157-182.
[58] De la Roche H, Leterrier J, Grandclaude P, Marchal M. 1980. A Classification of volcanic and plutonic rocks using R1R2-diagram and major-elements-Its relationships with current nomenclature[J]. Chemical Geology, 29(1-4): 183-210.
[59] Dril S, Khanchuk A I, Obolenskiy A A, Ogasawara M, Nokleberg W J. 2010. Late Carboniferous through early Jurassic metallogenesis and tectonics of northeast Asia, Chapter 7 in Metallogenesis and tectonics of northeast Asia[R]. US Geological Survey.
[60] Ewart A, Griffin W L. 1994. Application of proton-microprobe data to trace-element partitioning in volcanic rocks[J]. Chemical Geology, 117(1-4):251-284.
[61] Foley S F, Barth M G, Jenner G A. 2000. Rutile/melt partition coefficients for trace elements and an assessment of the influence of rutile on the trace element characteristics of subduction zone magmas[J]. Geochimica et Cosmochimica Acta, 64(5):933-938.
[62] Green T H. 1995. Significance of Nb/Ta as an indicator of geochemical processes in the crust-mantle system[J]. Chemical Geology, 120(3-4):347-359.
[63] Li J Y. 2005. Permian geodynamic setting of Northeast China and adjacent regions: closure of the Paleo-Asian Ocean and subduction of the Paleo-Pacific Plate[J]. Journal of Asian Earth Sciences, 26(3-4): 207-224.
[64] Loiselle M C, Wones D R. 1979. Characteristics and origin of anorogenic granites[J]. Geological Society of America Abstracts with Programs, 11(7):468.
[65] Maniar P D, Piccoli P M. 1989. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 101(5): 635-643.
[66] Miller C F, McDowell S M, Mapes R W. 2003. Hot and cold granites? Implications of zircon saturation temperatures andpreservation of inheritance[J]. Geology, 31(6): 529-532.
[67] Nozaka T, Liu Y. 2002. Petrology of the Hegenshan ophiolite and its implication for the tectonic evolution of northern China[J]. Earth and Planetary Science Letters, 202(1): 89-104.
[68] Peccerillo A, Taylor S R. 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey[J]. Contributions to Mineralogy and Petrology, 58(1):63-81.
[69] Pitcher W S, Atherton M P, Cobbing E J, Beckinsale R D. 1985. Magmatism at a Plate Edge: The Peruvian Andes[M]. Blackie-Halsted Press, 1-328.
[70] Sengör A M C , Natal'in B A , Burtman V S. 1993. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia[J]. Nature, 364(6435): 299-307.
[71] Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. Geological Society, London Special Publications, 42(1):313-345.
[72] Tang J, Xu W L, Wang F, Wang W, Xu M J, Zhang Y H. 2013. Geochronology and geochemistry of Neoproterozoic magmatism in the Erguna Massif, NE China: petrogenesis and implications for the breakup of the Rodinia supercontinent[J]. Precambrian Research, 224:597-611.
[73] Watson E B, Harrison T M. 1983. Zircon saturation revisited: temperature and composition effects in variety of crustal magma types[J]. Earth and Planetary Science Letters, 64(2):295-304.
[74] Whalen J B, Currie K L, Chappell B W. 1987. A-type granites: geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 95(4):407-419.
[75] Wu F Y, Jahn B M, Wilde S A, Lo C H, Yui T F, Lin Q, Ge W C, Sun D Y. 2003a. Highly fractionated I-type granites in NE China(Ⅱ): isotopic geochemistry and implications for crustal growth in the Phanerozoic[J]. Lithos, 67(3-4): 191-204.
[76] Wu F Y, Jahn B M, Wilde S A, Lo C H, Yui T F, Lin Q, Ge W C, Sun D Y. 2003b. Highly fractionated I-type granites in NE China (Ⅰ):geochronology and petrogenesis[J]. Lithos, 66(3-4):241-273.
[77] Wu F Y, Sun D Y, Ge W C, Zhang Y B, Grant M L, Wilde S A, Jahn B M. 2011. Geochronology of the Phanerozoic granitoids in northeastern China[J]. Journal of Asian Earth Sciences, 41(1):1-30.
[78] Wu F Y, Yang Y H, Xie L W, Yang J H, Xu P. 2006. Hf isotopic compositions of the standard zircons and baddeleyites used in U–Pb geochronology[J]. Chemical Geology, 234(1-2):105-126.
[79] Yang J H, Wu F Y, Wilde S A, Belousova E, Griffin W L. 2008. Mesozoic decratonization of the North China block[J]. Geology, 36(6):467-470.
[80] Yuan H L, Gao S, Liu X M, Li H M, Günther D, Wu F Y. 2004. Accurate U-Pb Age and Trace Element Determinations of Zircon by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry[J]. Geostandards and Geoanalytical Research, 28(3):353-370.
[81] Zhou J B, Wang B, Wilde S A, Zhao G C, Cao J L, Zheng C Q, Zeng W S. 2015. Geochemistry and U-Pb zircon dating of the Toudaoqiao blueschists in the Great Xing'an Range, northeast China, and tectonic implications[J]. Journal of Asian Earth Sciences, 97:197-210.
-
计量
- 文章访问数: 730
- PDF下载数: 66
- 施引文献: 0