Evaluation of Soil and Water Loss in the Rocky Mountain Area of Southwest China Based on Improved RUSLE Model: Taking Longshan County, Hunan Province as an Example
-
摘要: 本文基于Landsat 遥感影像,引入归一化山地植被指数(NDMVI),改进RUSLE模型中的植被管理因子C,得到改进的RUSLE模型,并利用其对湖南省龙山县2000~2020 年的土壤侵蚀进行估算,旨在快速、科学地评价研究区水土流失变化情况,为以龙山县为代表的西南土石山区水土流失治理提供科学依据。2000 年的NDMVI 数值范围较均一化植被指数(NDVI)增加了0.3158,2020 年的NDMVI 数值较NDVI 增加了0.2076,增加幅度均较大,这说明NDMVI 区分地物的能力更强,具有较强地消除复杂地形影响的能力。通过影像对比,可以看出NDMVI 区分地物的能力要优于NDVI,提取城镇用地、水体等地物的精度更高,尤其在地形起伏地区以及山坡的阴影地区,能更好地反演植被覆盖管理因子。基于山地植被指数修正的植被覆盖管理因子C 可以更准确地区分地物,尤其是在地形起伏和山坡阴影地区。该方法能有效地运用于西南土石山区的水土流失监测和评价,实现动态变化的快速定量监测。Abstract: The RUSLE model, the vegetation management factor C of which is improved based on Landsat remote sensing images and the Normalized Mountain Vegetation Index (NDMVI), is used to estimate soil erosion from 2000 to 2020 in Longshan County, Hunan Province. The aim is to quickly and scientifically evaluate the changes in soil erosion in the study area, and provide a scientific basis for soil erosion control in southwestern rocky mountainous areas represented by Longshan County. The NDMVI value range in 2000 increased by 0.3158 compared to the Normalized Vegetation Index (NDVI), and the NDMVI value range in 2020 increased by 0.2076 compared to NDVI, with significant increases. This indicates that it is easier to use NDMVI to distinguish features and eliminate complex terrain impacts. Through image comparison, it can be seen that it is better to use NDMVI to distinguish land features than NDVI, and the accuracy of extracting urban land, water bodies, and other land features is higher, especially in areas with undulating terrain and shaded slopes, which can better invert vegetation cover management factors. The vegetation cover management factor C within mountain vegetation index correction can be used to more accurately distinguish land features, especially in areas with undulating terrain and shaded slopes. This method can be effectively applied to the monitoring and evaluation of soil and water loss in southwestern mountainous areas, achieving rapid and quantitative monitoring of dynamic changes.
-
-
[1] 蔡崇法,丁树文,史志华,黄丽,张光远.2000.应用USLE 模型与地理信息系统IDRISI 预测小流域土壤侵蚀量的研究[J].水土保持学报,14(2):19-24.
[2] 陈朝良,赵广举,穆兴民,田鹏,刘利昆.2021.基于RUSLE模型的湟水流域土壤侵蚀时空变化[J].水土保持学报,35(4):73-79.
[3] 陈红,江旭聪,任磊,唐小倩,肖新.2021.基于RUSLE模型的淮河流域土壤侵蚀定量评价[J].土壤通报,52(1):165-176.
[4] 陈学兄.2013.基于遥感与GIS 的中国水土流失定量评价[D].西北农林科技大学博士学位论文,25-42.
[5] 陈学兄,常庆瑞,毕如田,刘正春,徐立帅,张小军.2020.基于山地植被指数估算临县植被覆盖度[J].应用基础与工程科学学报,28(2):310-320.
[6] 陈正发,龚爱民,宁东卫,张刘东,王建雄,相彪. 2021. 基于RUSLE 模型的云南省土壤侵蚀和养分流失特征分析[J].水土保持学报,35(6):7-14.
[7] 邓辉,何政伟,陈晔,许辉熙,蔡宏.2013.基于GIS 和RUSLE模型的山地环境水土流失空间特征定量分析——以四川泸定县为例[J].地球与环境,41(6):669-679.
[8] 付兴涛,张丽萍.2015.坡长对红壤侵蚀影响人工降雨模拟研究[J].应用基础与工程科学学报,23(3):474-483.
[9] 高峰,华璀,卢远,陶艳成.2014.基于GIS 和USLE 的钦江流域土壤侵蚀评估[J].水土保持研究,21(1):18-22+28.
[10] 高凡洁,张富,胡彦婷,柴亚昕,包炳琛,蒋承洋.2022.基于GIS和RUSLE模型的定西市安定区土壤侵蚀时空变化[J].甘肃农业大学学报,57(l):161-168.
[11] 江莉佳.2015.基于RUSLE模型的湘西石漠化地区土壤侵蚀研究——以龙山县为例[D].长沙:中南林业科技大学硕士学位论文,4-26.
[12] 李晓松,吴炳方,王浩,张瑾.2011.区域尺度海河流域水土流失风险评估[J].遥感学报,15(2):372-387.
[13] 梁音,史学正.1999.长江以南东部丘陵山区土壤可蚀性K值研究[J].水土保持研究,6(2):47-52.
[14] 刘亚迪,汪小钦,江洪.2015.基于地形调节植被指数估算长汀县植被覆盖度[J].国土资源遥感,27(1):164-171.
[15] 罗杰,刘绥华,阮欧,胡海涛.2022.运用NDVI-Albedo 特征空间提取石漠化信息[J].测绘通报,(4):56-60+82.
[16] 潘佑堂,杨胜刚.1995.武陵山区水土流失亟待治理[J].湖南水利,(1):42-45.
[17] 彭华.2006.加快龙山生态建设步伐[J].湖南林业,(9):5.
[18] 孙桂凯,王国帅,魏义熊,赵荣娜,莫崇勋,杨云川.2021.基于改进遥感生态指数的岩溶山区生态质量评价[J].水土保持通报,41(2):230-239.
[19] 王丰,刘金铜,付同刚,高会,齐菲.2022.基于RUSLE模型的太行山区土壤侵蚀时空分异特征及影响因子研究[J].
[20] 中国生态农业学报(中英文),7:1064-1076.
[21] 王海涛.2020.湖南省近20 年土壤侵蚀时空变化[D].长沙:湖南农业大学硕士学位论文,8-36.
[22] 吴兆清,苏绍眉.2004.湖南“四水”中上游水土流失现状与治理对策[J].矿冶,13(1):9l-94.
[23] 吴志杰,何国金,黄绍霖,王猛猛,林金堂.2017.南方丘陵区植被覆盖度遥感估算的地形效应评估[J].遥感学报,21(1):159-167.
[24] 吴志杰,何国金,王猛猛,傅娇凤,邹丹.2016.南方丘陵区植被覆盖度遥感估算与时空变化研究:以福建省永定县为例[J].遥感技术与应用,31(6):1201-1208.
[25] 吴志杰,徐涵秋.2011.卫星影像数据构建山地植被指数与应用分析[J].地球信息科学学报,13(5): 656-664.
[26] 杨冉冉,徐涵秋,林娜,何慧,曾宏达.2013.基于RUSLE 的福建省长汀县河田盆地区土壤侵蚀定量研究[J].生态学报,33(10):2974-2982.
[27] 尹黎明,袁志忠,雷永康.2012.湘西土家族苗族自治州的水土流失及防治对策[J].中国水土保持,(1):21-23.
[28] 张灿,徐涵秋,张好,唐菲,林中立.2015.南方红壤典型水土流失区植被覆盖度变化及其生态效应评估—以福建省长汀县为例[J].自然资源学报,30(6):917-928.
[29] 张素,熊东红,吴汉,袁勇,李琬欣,张闻多.2021.基于RUSLE模型的孙水河流域土壤侵蚀空间分异特征[J].水土保持学报,35(5):24-30.
[30] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.2009. GB/T 17296-2009 中国土壤分类与代码[S].
[31] 中华人民共和国水利部.2007. SL190-2007 土壤侵蚀分类分级标准[S].
[32] Jia K, Liang S L, Gu X F, Baret F, Wei X Q, Wang X X, Yao Y J, Yang L Q, Li Y W. 2016. Frational vegetation cover estimation algorithm for Chinese GF-1 wide field view data[J]. Remote Sensing of Environment, 177:184-191.
[33] Wischmeir W H, Smith D D. 1978. Predicting rainfall erosion losses: A guide to conservation planning[M].USA: Agriculture Handbook, 537.
-
计量
- 文章访问数: 1207
- PDF下载数: 173
- 施引文献: 0