Application of Geochemical Block Method in the Potential Prediction of Copper Resources in Eritrea
-
摘要: 新元古代东非造山运动在厄立特里亚阿拉伯-努比亚地盾区形成了大面积出露的变质火山沉积岩系及相应的花岗质岩浆岩,与之相关的铜矿资源非常丰富。本文以厄立特里亚1︰100 万水系沉积物地球化学数据样本为基础,应用地球化学块体理论,对该国铜资源潜力进行预测。厄立特里亚共圈定地球化学块体7 个,地球化学区域异常5 个,地球化学块体的铜元素异常下限值为28×10-6。根据不同成矿带内已知铜矿床的资源量推算各区块铜的成矿率,以1 km矿床勘探深度为准则预测各区块潜在铜金属量,估算出厄立特里亚潜在铜资源为930.76 万吨。其中,5、6 号铜地球化学块体可作为下一步铜矿勘查的重点区域,1、2、3、4、7号铜地球化学块体的找矿潜力也值得注意。Abstract: The Neoproterozoic East African orogeny formed a large area of exposed metavolcanic sedimentary rock series and corresponding granitic magmatic rocks in the Arab-Nubian Shield, Eritrea, in which the copper resource is very rich. In this paper, 1:1000000 stream sediment geochemical data in Eritrea was selected as the research object. Based on the theory of geochemical block method, we synthetically evaluated the Cu resource potential of Eritrea. The result of geochemical data shows that the value of geochemical anomaly threshold is 28×10-6. Seven geochemical blocks and five regional anomalies were delineated. According to the reserves of known deposits in different metallogenic belts, the mineral coefficient of Cu in each areawas calculated. The total copper tonnage and mineral resources in each area were calculated based on the exploration depth of the 1km. Thus, we inferred that the total copper tonnage in the 7 geochemical blocks and 5 regional geochemical anomalies of Eritrea (given a 1 km thickness of every rock mass) is 9.3076 million tons. Among them, geochemical blocks 5 and 6 should be used as the focus of the next step, and the exploration potential in geochemical blocks 1, 2, 3, 4 and 7 should also be noted.
-
Key words:
- geochemical block /
- copper deposit /
- mineral resources forecast /
- Eritrea
-
-
[1] 迟清华,鄢明才.2007.应用地球化学元素丰度数据手册[M].北京:地质出版社.
[2] 姜军胜,胡鹏,向文帅,王建雄,雷义均,赵凯,曾国平,吴发富,向鹏.2021.埃塞俄比亚西部布雷地区类埃达克岩年代学、地球化学及对区域构造演化的指示[J].地质学报,95(4):1260-1272.
[3] 金希,杨功,肖高强,龚鹏,熊燃,赵波.2012.地球化学块体法在滇中层控型铜矿资源评价中的应用[J].地质科技情报,31(4):33-39.
[4] 李堃,刘凯,汤朝阳,段其发.2013.湘西黔东地区Zn地球化学块体特征及锌资源潜力估算[J]. 中国地质,40(4):1270-1277.
[5] 刘彬,王学求.2018.长江中下游地区铜地球化学块体物质来源及其对铜矿集区形成的制约[J].矿物岩石地球化学通报,37(2):271-282.
[6] 刘大文,谢学锦,严光生,连长云,王全明.2002.地球化学块体的方法技术在山东金资源潜力预测中的应用[J].地球学报,23(2):169-174.
[7] 刘大文.2002.地球化学块体的概念及其研究意义[J].地球化学,31(6):539-548.
[8] 牛旭刚,周宏,张文纲,牛永杰,郭东宝,丁国林,王茂.2023.S-A多重分形法在地球化学异常圈定中的对比应用—以甘肃文康地区为例[J].地质与勘探,59(4):817-827.
[9] 王学求,申伍军,张必敏,聂兰仕,迟清华,徐善法.2007.地球化学块体与大型矿集区的关系—以东天山为例[J].地学前缘,(5):116-123.
[10] 王学求.2013.勘查地球化学近十年进展[J].矿物岩石地球化学通报,32(2):190-197.
[11] 向文帅,姜军胜,雷义均,赵凯.2020.埃塞俄比亚西部布雷地区A 型花岗岩成因及地质意义[J]. 地球科学,46(7):2299-2310.
[12] 向文帅,姜军胜,赵凯.2019.应用地球化学块体法评价厄立特里亚金矿资源潜力[J].中国矿业,28(12):176-182.
[13] 谢学锦,邵跃,王学求.1999.走向21 世纪矿产勘查地球化学[M].北京:地质出版社.
[14] 谢学锦,刘大文,向运川,严光生.2002.地球化学块体—概念和方法学的发展[J].中国地质,29(3):225-233.
[15] 赵凯,姚华舟,王建雄,Ghebsha Fitwi Ghebretnsae,向文帅,杨镇.2018.厄立特里亚Koka 花岗岩锆石U-Pb 年代学、地球化学特征及其地质意义[J]. 地球科学,45(1):156-167.
[16] 赵忠孝,段焕春,王凤仙.2012.厄立特里亚地质矿产概况及勘查新进展[J].矿产勘查,3(5):707-714.
[17] Andersson U B, Ghebreab W, Teklay M. 2006. Crustal evolution and metamorphism in east-central Eritrea, south-east Arabian-Nubian Shield[J]. Journal of African Earth Sciences, 44:45-65.
[18] Barrie C T, Abdalla M A F, Hamer R D. 2016. Volcanogenic Massive Sulphide-Oxide Gold Deposits of the Nubian Shield in Northeast Africa[J]. Mineral Deposits of North Africa, 5(17):417-435.
[19] De Souza Filho C R, Drury S A. 1998. A Neoproterozoic supra-subduction terrane in northern Eritrea, NE Africa[J]. Journal of the Geological Society, 155(3): 551-566.
[20] Ghebreab W, Greiling R O, Solomon S. 2009. Structural setting of Neoproterozoic mineralization, Asmara district, Eritrea[J]. Journal of African Earth Sciences, 55(5): 219-235.Hood S B, Cracknell M J, Gazley M F, Reading A M. 2019. Improved supervised classification of bedrock in areas of transported overburden: Applying domain expertise at Kerkasha, Eritrea[J]. Applied Computing and Geosciences, 3-4: 100001.
[21] Johnson P R, Andresen A, Collins A S, Fowler A R, Fritz H, Ghebreab W, Kusky T, Stern R J. 2011. Late Cryogenian-Ediacaran history of the Arabian-Nubian Shield: A review of depositional, plutonic, structural, and tectonic events in the closing stages of the northern East African Orogen[J]. Journal of African Earth Sciences, 61(3): 167-232.
[22] Johnson P R, Zoheir B A, Ghebreab W, Stern R J, Barrie C T, Hamer R D. 2017. Gold-bearing volcanogenic massive sulfides and orogenic-gold deposits in the Nubian Shield[J]. South African Journal of Geology, 120: 63-76.
[23] Li Z G, Chu F Y, Dong Y H, Li X H, Liu J Q, Yang K H, Tang L M. 2016. Origin of selective enrichment of Cu and Au in sulfide deposits formed at immature back-arc ridges: examples from the Lau and Manus Basins[J]. Ore Geology Reviews, 74: 52-62.
[24] Perello J, Richard H S, Humberto B, Alfredo G. 2020. Metallogenic inception of the Arabian-Nubian Shield: Daero Paulos porphyry copper prospect, Eritrea[J]. Gondwana research, 88(1): 106-125.
[25] Stern R J, Johnson P. 2010. Continental lithosphere of the Arabian plate: a geologic, petrologic, and geophysical synthesis[J]. Earth-Science Reviews, 101(1-2):29-67.
[26] Stern R J, Johnson, P R. 2019. Constraining the Opening of the Red Sea: Evidence from the Neoproterozoic margins and Cenozoic magmatism for a volcanic rifted margin. In: Rasul N M A, Stewart I C F. Geological Setting, Palaeoenvironment and Archaeology of the Red Sea[M]. Springer International Publishing: 53-79.
[27] Stern R J. 1994. Arc assembly and continental collision in the Neoproterozoic East African Orogen: implications for the consolidation of Gondwanaland[J]. Annual Reviews of Earth and Planetary Sciences, 22: 319-351.
[28] Teklay M, Haile T, Kröner A, Asmerom Y, Watson J. 2003. A back-arc palaeotectonic setting for the Augaro Neoproterozoic magmatic rocks of western Eritrea[J]. Gondwana Research, 6:629-640.
[29] Teklay M, Kröner A, Mezger K. 2001. Geochemistry, geochronology and isotope geology of Nakfa intrusive rocks, northern Eritrea: products of a tectonically thickened Neoproterozoic crust[J]. Journal African Earth Sciences, 33:283-301.
[30] Teklay M, Kröner A, Mezger K. 2002. Enrichment from Plume Interaction in the Generation of Neoproterozoic Arc Rocks in Northern Eritrea: Implications for Crustal Accretion in the Southern Arabian-Nubian Shield[J]. Chemical Geology, 184(1-2): 167-84.
[31] Teklay M. 2006. Neoproterozoic arc-back-arc system analog to modern arc-back-arc systems: evidence from tholeiite-boninite association, serpentinite mudflows and across-arc geochemical trends in Eritrea, southern Arabian-Nubian shield[J]. Precambrian Research, 145(1): 81-92.
[32] Teklay M. 1997. Petrology, geochemistry and geochronology of Neoproterozoic magmatic arc rocks from Eritrea: implications for crustal evolution in the southern Nubian Shield[M]. Memoir 1, Department of Mines,Asmara: 125.
-
计量
- 文章访问数: 214
- PDF下载数: 133
- 施引文献: 0