Multi-stage Activity, Paleo-stress Field and Dynamic Background of the Sanzao Fault Zone Since Early Cretaceous in the Zhuhai Area, Guangdong Province
-
摘要: 广东珠海地区三灶断裂带为莲花山断裂带的南西延伸段,其空间分布、变形特征及构造演化对认识华南东南部中新生代的构造演化过程具有重要意义。本文通过活动断裂填图、构造解析、地球物理勘探和地质钻探等手段,查明了三灶断裂带的空间分布以及不同期次变形的几何学与运动学特征。基于新获得的断层面与擦痕矢量数据反演了不同变形期次应力场及方向,结合区域大地构造演化历史,提出三灶断裂带早白垩世以来经历了五期古构造应力场作用,表现为多阶段不同方向的挤压和伸展过程,分别响应了晚中生代以来的一系列构造事件,Ⅰ期NW-SE 向伸展(D1)可能记录了早白垩世初期区域地壳伸展;Ⅱ期NW-SE 向挤压(D2)可能与早白垩世末期-晚白垩世早期造成华南地区断陷盆地反转及长乐南澳断裂带变形变质的挤压事件有关;Ⅲ期近SN向挤压(D3)可能与形成晚白垩世与古近纪地层之间区域性不整合的挤压事件有关;Ⅳ期近EW向挤压(D4)可能受控于渐新世-中新世南海洋盆的扩张;Ⅴ期NW-SE 向伸展(D5)可能与上新世-第四纪菲律宾海板块的向西持续俯冲有关。Abstract: The Sanzao fault zone in the Zhuhai area, Guangdong Province is the southwest extension of the Lianhuashan fault zone, and its spatial distribution, deformation characteristics and tectonic evolution are of great significance for understanding the tectonic processes of the Mesozoic and Cenozoic in southeastern South China. The spatial distribution of the Sanzao fault zone, the geometric and kinematic characteristics of different deformation stages were identified, through active fault mapping, detailed tectonic analysis, geophysical exploration and drilling. The stress field and their direction in different periods were inverted, based on the newly identified fault planes and slickensides data. Furthermore, combined with the regional tectonic evolution, it is regarded that the Sanzao fault zone was influenced by five phases of paleo-tectonic stress field since the early Cretaceous, characterized by multi-stage compression or extension in different directions. These phases responds to a series of regional tectonic events since the late Mesozoic respectively. Phase Ⅰ NW-SE extension (D1) may record the regional crustal extension during the early Cretaceous. Phase Ⅱ NW-SE compression (D2) may be related to the compression events that caused the reversed faulted basins in South China and deformation and metamorphism of Changle-Nanao fault zone during the late early Cretaceous to early late Cretaceous. Phase Ⅲ nearly SN compression (D3) may be related to the compression events which produced the regional unconformity between the Late Cretaceous and Paleogene strata. Phase Ⅳ nearly EW compression (D4) may be controlled by the expansion of the South China Sea oceanic basin between the Oligocene and Miocene. Phase Ⅴ NW-SE extension (D5) may be related to the sustained westward subduction of the Philippine Sea Plate from the Pliocene to Quaternary.
-
-
[1] 柏道远,李彬,曾广乾,杨俊.2024.湖南省印支运动应力场特征及其动力机制[J].华南地质,40(2):252-269.
[2] 程世秀,李三忠,索艳慧,刘鑫,余珊,戴黎明,马云,赵淑娟,王霄飞,安慧婷,熊莉娟,薛友辰.2012.南海北部新生代盆地群构造特征及其成因[J].海洋地质与第四纪地质,32(6):79-93.
[3] 董树文,张岳桥,李海龙,施炜,薛怀民,李建华,黄始琪,王永超.2019“. 燕山运动”与东亚大陆晚中生代多板块汇聚构造——纪念“燕山运动”90 周年[J].中国科学:地球科学,49(6):913-938.
[4] 杜继宇.2012.莲花山断裂带和长乐—南澳断裂带构造特征及活动时代[D].吉林大学硕士学位论文.
[5] 广东省地质矿产局.1989. 1∶5 万唐家幅、澳门幅、斗门县幅、大横琴幅、三灶圩幅区域地质综合调查报告[R].
[6] 广东省地质调查院.2003. 1∶25 万江门市幅区域地质调查报告[R].
[7] 广东省地质调查院.2017.广东省及香港、澳门特别行政区区域地质志[R].
[8] 广东省地质调查院.2020.珠江三角洲基底断裂探查研究报告[R].
[9] 广东省海洋地质调查院.2021.广东省海岸带综合地质调查——横琴新区调查示范成果报告[R].
[10] 广东省珠海工程勘察院.1992. 1∶5 万平沙农场幅、荷包岛幅、飞沙幅区域地质综合调查报告[R].
[11] 国家地震局.1982.中国活动构造典型卫星影象集[M].北京:地震出版社.
[12] 郝天珧,徐亚,赵百民,张永军,彭利丽.2009.南海磁性基底分布特征的地球物理研究[J]. 地球物理学报,52(11):2763-2774.
[13] 侯泉林.2020. 高等构造地质学(第三卷)专题知识与实践[M].北京:科学出版社.
[14] 黄玉昆,张珂.1990.广东莲花山断裂带的新构造运动特征[J].华南地震,10(2):25-34.
[15] 贾磊.2016.三水盆地与茂名盆地白垩系构造沉积特征及其对古南海俯冲的响应[D].中国地质大学(北京)硕士学位论文.
[16] 贾小辉,李响,杨文强.2023.华南早侏罗世花岗质侵入体的岩石成因及构造背景——兼论其关键金属成矿作用[J].华南地质,39(2):186-202.
[17] 李建超,丘元禧.1990.广东莲花山燕山早期断裂动热变质带的基本特征及形成机制的探讨[J].长春地质学院学报,20(1):11-20+123.
[18] 李三忠,索艳慧,刘鑫,戴黎明,余珊,赵淑娟,马云,王霄飞,程世秀,安慧婷,薛友辰,熊莉娟,曹现志,许立青.2012.南海的盆地群与盆地动力学[J].海洋地质与第四纪地质,32(6):55-78.
[19] 李武显,周新民.1999.中国东南部晚中生代俯冲带探索[J].高校地质学报,5(2):164-169.
[20] 梁墩杰,谢佑才.1988.广东莲花山断裂带西南段地质构造特征[J].中国区域地质,(2):30-35.
[21] 林鹤鸣,郝沪军.2002.珠江口盆地东部和台湾西部海域中生界地质构造特征[J]. 中国海上油气(地质),16(4):231-237.
[22] 鲁宝亮,王璞珺,张功成,王万银.2015.南海区域断裂特征及其基底构造格局[J].地球物理学进展,30(4):1544-1553.
[23] 鲁宝亮,王璞珺,张功成,张斌,孙晓猛,李伍志,郎元强.2011.南海北部陆缘盆地基底结构及其油气勘探意义[J].石油学报,32(4):580-587.
[24] 邱元禧,邱津松,李建超,钟宏平.1991.广东莲花山断裂带中、新生代多期复合变形变质带的基本特征及其形成机制的探讨[J].中国地质科学院地质力学研究所所刊,(14):93-106.
[25] 万玲,姚伯初,吴能友.2000.红河断裂带入海后的延伸及其构造意义[J].南海地质研究,36(12):22-32.
[26] 汪礼明,王军,王核,卜安,郭瑞,王涌泉,朱沛云.2016.广东莲花山断裂带动力变质成矿作用新认识[J].地质论评,62(增刊):90-92.
[27] 汪礼明,王军,王核,卜安,李莎莎,钱龙兵,王玮.2018.粤东莲花山断裂带动力变质作用与动力变质热液成矿[J].大地构造与成矿学,42(5):908-917.
[28] 王军,汪礼明,公凡影,王艳,王成明,卜安,朱沛云.2021.粤东莲花山断裂带韧性剪切的温压条件及其对钨锡铜多金属成矿作用的约束[J].岩石学报,37(6):1921-1932.
[29] 王鹏程,李三忠,郭玲莉,赵淑娟,李玺瑶,王永明,惠格格,王倩.2017.南海打开模式:右行走滑拉分与古南海俯冲拖曳[J].地学前缘,24(4):294-319.
[30] 王霄飞,余珊,龚跃华,李三忠,刘鑫,马云,赵淑娟.2014.华南北东向断裂在南海北部陆架的延伸[J].大地构造与成矿学,38(3):557-570.
[31] 王晓虎,张文高,陈正乐,周荣德,陈柏林,许典葵,霍海龙,李季霖,张涛,丁志磊,李效壮.2020.华南沿海莲花山断裂带控矿构造变形时限:来自锆石U-Pb 年龄与地层时代的约束[J].中国地质,47(4):985-997.
[32] 谢佑才.1989.莲花山构造带中段糜稜岩带的某些特征[J].中国区域地质,(3):256-261.
[33] 杨航.2021.广东莲花山断裂带幕式花岗质岩浆成因与演化[D].中国石油大学(北京)硕士学位论文.
[34] 杨航,辛宇佳,李建华,张培星.2022.广东莲花山花岗岩体锆石U-Pb 年龄、地球化学特征及地质意义[J].地球学报,43(2):211-223.
[35] 杨锦,杨帆,黄小龙,朱圣柱,苗秀全,贺鹏丽.2022.南海扩张前序岩浆活动:解译华南三水盆地古近纪玄武质岩浆作用过程[J].大地构造与成矿学,46(3):530-551.
[36] 杨超群,权伟.1997.粤东和香港地区莲花山韧性剪切带的动力—动热变质作用[J].广东地质,12(2):24-34.
[37] 张进,曲军锋,张庆龙,李锦轶,郑荣国,张北航,赵衡,解国爱,刘建峰,何振宇.2018.基岩区构造地质填图方法思考、实践、探索[J].地质通报,37(Z1):192-221.
[38] 张培星.2021.华南东南部莲花山断裂带晚中生代火山岩的成因与演化[D].中国石油大学(北京)硕士学位论文.
[39] 周立功.1990.广东莲花山断裂带的现今活动研究[J].中国地质科学院562 综合大队集刊,9:107-122.
[40] 邹和平,王建华,丘元禧.2000.广东南澳和莲花山韧性剪切带40Ar/39Ar年龄及其地质意义[J].地球学报,21(4):356-364.
[41] Allmendinger R W, Cardozo N, Fisher D M. 2012. Structural geology algorithms: Vectors and tensors[J]. Cambridge University Press.
[42] Bott M H P. 1959. The mechanisms of oblique slip faulting[J]. Geological Magazine, 96(2): 109-117.
[43] Davis D W, Sewell R J, Campbell S D G. 1997. U-Pb dating of Mesozoic igneous rocks from Hong Kong[J]. Journal of the Geological Society, 154(6): 1067-1076.
[44] Delvaux D, Sperner B. 2003. New aspects of tectonic stress inversion with reference to the TENSOR program[J]. Geological Society, London, Special Publications, 212: 75-100.
[45] Li J H, Cawood P A, Ratschbacher L, Zhang Y Q, Dong S W, Xin Y J, Yang H, Zhang P X. 2020. Building Southeast China in the late Mesozoic: Insights from alternating episodes of shortening and extension along the Lianhuashan fault zone[J]. Earth-Science Reviews, 201: 103056.
[46] Li J H, Dong S W, Cawood P A, Zhao G C, Johnston S T, Zhang Y Q, Xin Y J. 2018. An Andean-type retro-arc foreland system beneath northwest South China revealed by SINOPROBE profiling[J]. Earth and Planetary Science Letters, 490(1): 170-179.
[47] Li J H, Zhang Y Q, Dong S W, Johnston S T. 2014a. Cretaceous tectonic evolution of South China: A preliminary synthesis[J]. Earth-Science Reviews, 134(1): 98-136.
[48] Li J H, Ma Z L, Zhang Y Q, Dong S W, Li Y, Lu M A, Tan J Q. 2014b. Tectonic evolution of Cretaceous extensional basins in Zhejiang Province, eastern South China: Structural and geochronological constraints[J]. International Geology Review, 56(13): 1602-1629.
[49] Li X H. 2000. Cretaceous magmatism and lithosphere extension in southeast China[J]. Journal of Asian Earth Sciences, 18(3): 293-305.
[50] Li X S, Zhou Q J, Su T Y, Liu L J, Gao S, Zhou S W. 2016. Slope-confined submarine canyons in the Baiyun deep-water area, Northern South China Sea: Variation in their modern morphology[J]. Marine Geophysical Research, 37(2): 95-112.
[51] Li Z X, Li X H. 2007. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: A flat-slab subduction model[J]. Geology, 35 (2): 179-182.
[52] Lin W, Wei W. 2018. Late Mesozoic extensional tectonics in the North China Craton and its adjacent regions: a review and synthesis[J]. International Geology Review, 62(7-8): 811-839.
[53] Liu S F, Gurnis M, Ma P F, Zhang B. 2017. Reconstruction of northeast Asian deformation integrated with western Pacific plate subduction since 200 Ma[J]. Earth-Science Reviews, 175(1): 114-142.
[54] Marrett R, Allmendinger R W. 1990. Kinematic analysis of fault-slip data[J]. Journal of Structural Geology, 12(8): 973-986.
[55] Maruyama S, Seno T. 1986. Orogeny and relative plate motions: Example of the Japanese Islands[J]. Tectonophysics, 127(3-4): 305-329.
[56] Suo Y H, Li S Z, Jin C, Zhang Y, Zhou J, Li X Y, Wang P C, Liu Z, Wang X Y, Somerville I. 2019. Eastward tectonic migration and transition of the Jurassic-Cretaceous Andean-type continental margin along Southeast China[J]. Earth-Science Reviews, 196: 102884.
[57] Wu F Y, Yang J H, Xu Y G, Wilde S A, Walker R J. 2019. Destruction of the North China craton in the Mesozoic[J]. Annual Review of Earth and Planetary Sciences, 47(1): 173-195.
[58] Xu X B, Liang C H, Xu Y D. 2021. Kinematic analysis of fault-slip data in the Nanling Tectonic Belt and Cretaceous to Paleogene tectonic evolution of the Central South China Block[J]. Journal of Asian Earth Sciences, 221: 104951.
[59] Zhang B, Liu S F, Wan N, Xu Q J. 2023. Paleostress regime evolution in South China induced by dynamic changes in Izanagi-Pacific subduction since the Cretaceous[J]. Journal of Structural Geology, 174: 104934.
[60] Zhang Y Z, Wang Y J, Zhang Y H, Zhang A M. 2015. Neoproterozoic assembly of the Yangtze and Cathaysia blocks: evidence from the Cangshuipu group and associated rocks along the central Jiangnan Orogen, South China[J]. Precambrian Research, 269: 18-30.
[61] Zhou X M, Li W X. 2000. Origin of Late Mesozoic igneous rocks in Southeastern China: implications for lithosphere subduction and underplating of mafic magmas[J]. Tectonophysics, 326(3-4): 269-287.
[62] Zhou X M, Sun T, Shen W Z, Shu L S, Niu Y L. 2006. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: A response to tectonic evolution[J]. Episodes, 29(1): 26-33.
-
计量
- 文章访问数: 40
- PDF下载数: 10
- 施引文献: 0