油气管道横穿滑坡模型试验研究

赵雅君, 张振永, 王东源, 江珂, 黄栋. 2024. 油气管道横穿滑坡模型试验研究. 华南地质, 40(3): 538-547. doi: 10.3969/j.issn.2097-0013.2024.03.009
引用本文: 赵雅君, 张振永, 王东源, 江珂, 黄栋. 2024. 油气管道横穿滑坡模型试验研究. 华南地质, 40(3): 538-547. doi: 10.3969/j.issn.2097-0013.2024.03.009
ZHAO Ya-Jun, ZHANG Zhen-Yong, WANG Dong-Yuan, JIANG Ke, HUANG Dong. 2024. Experimental Study of an Oil and Gas Pipeline Across a Landslide Model. South China Geology, 40(3): 538-547. doi: 10.3969/j.issn.2097-0013.2024.03.009
Citation: ZHAO Ya-Jun, ZHANG Zhen-Yong, WANG Dong-Yuan, JIANG Ke, HUANG Dong. 2024. Experimental Study of an Oil and Gas Pipeline Across a Landslide Model. South China Geology, 40(3): 538-547. doi: 10.3969/j.issn.2097-0013.2024.03.009

油气管道横穿滑坡模型试验研究

  • 基金项目: 国家自然科学基金面上项目(42171087)、国家管网科研项目(FWJF-2022-198)
详细信息
    作者简介: 赵雅君(1972—),女,工程师,从事国家管网建设项目前期规划研究,E-mail: zhaoyj02@pipechina.com.cn
    通讯作者: 黄栋(1980—),男,副研究员,从事山地灾害(滑坡)形成机理、风险评估、监测及预警研究,E-mail: dhuang@imde.ac.cn
  • 中图分类号: P694;TE832

Experimental Study of an Oil and Gas Pipeline Across a Landslide Model

More Information
  • 滑坡是造成长输埋地油气管道破坏的主要地质灾害之一。本文以浅层土质、横向滑坡为主要研究对象,开展大尺寸小管径足尺模型试验,通过模型箱加载装置控制斜坡坡度和位移,对油气管道横穿滑坡时管道的受力响应规律和变形破坏特征进行研究。研究结果表明:当斜坡坡度大于20°时,管道应变增幅变大;管道跨中发生局部屈曲,整体呈梁式对称弯曲破坏形式,试验极限压应变值与DNV(挪威船级社)规范和国内规范计算值基本一致;管道处于弹性和弹塑性阶段时,管道轴向应变的试验值与数值模拟(PSI模型和实体单元模型)结果基本一致,管道屈曲破坏时试验值显著大于数值模拟结果。本研究对于山区油气管道敷设和滑坡防治具有重要的指导意义。

  • 加载中
  • 图 1  大型崩滑试验模拟平台

    Figure 1. 

    图 2  模型试验示意图

    Figure 2. 

    图 3  应变片布置示意图

    Figure 3. 

    图 4  土压力盒布置图

    Figure 4. 

    图 5  模型制备

    Figure 5. 

    图 6  管道应变变化图

    Figure 6. 

    图 7  管道应变分布图

    Figure 7. 

    图 8  管道轴向应变变化图

    Figure 8. 

    图 9  管道轴向应变分布图

    Figure 9. 

    图 10  土压力变化曲线

    Figure 10. 

    图 11  管周土压力分布

    Figure 11. 

    图 12  综合数据分析

    Figure 12. 

    图 13  管道开挖照片

    Figure 13. 

    图 14  不同规范极限应变值对比结果

    Figure 14. 

    图 15  有限元对比结果

    Figure 15. 

    表 1  岩土体力学参数

    Table 1.  Geotechnical physical parameters

    岩土体类型 重度(kN/m3 弹性模量(MPa) 泊松比 粘聚力(kPa) 内摩擦角(°)
    碎石土 19.5 27.5 0.3 15 35
    下载: 导出CSV

    表 2  管道力学参数

    Table 2.  Pipe mechanical parameter

    管径(mm) 壁厚(mm) 密度(kg/m3 弹性模量(GPa) 泊松比 屈服强度MPa)
    50 1.2 7850 210 0.3 235
    下载: 导出CSV
  • [1]

    陈利琼,宋利强,吴世娟,邱星栋,刘 琦,夏燕,孙靖云.2017.基于有限元方法的滑坡地段输气管道应力分析[J]. 天然气工业,37(2):84-91. doi: 10.3787/j.issn.1000-0976.2017.02.011

    [2]

    邓道明,周新海,申玉平.1998.横向滑坡过程中管道的内力和变形计算[J]. 油气储运,17(7):18-22.

    [3]

    国家发展改革委,国家能源局. 2017. 关于印发《中长期油气管网规划》的通知 [EB/OL]. https://www.ndrc.gov.cn/xxgk/zcfb/ghwb/201707/t20170712_962238.html.

    [4]

    黄维和,郑洪龙,李明菲.2019.中国油气储运行业发展历程及展望[J]. 油气储运,38(1):1-11. doi: 10.6047/j.issn.1000-8241.2019.01.001

    [5]

    林 冬,雷 宇,许可方,黄润秋,朱 勇,罗 敏,陶宏伟.2011.横向滑坡对管道的影响试验[J]. 石油学报,32:728-732. doi: 10.7623/syxb201104026

    [6]

    刘 慧. 2008. 滑坡作用下埋地管线反应分析[D]. 大连理工大学硕士学位论文.

    [7]

    刘 鹏,李玉星,张 宇,孙明源,张 玉,张 炎.2021.典型地质灾害下埋地管道的应力计算[J]. 油气储运,40:157-165.

    [8]

    马清文. 2007. 滑坡与输油气管道的力学机理与防治—以兰成渝输油管道为例[D]. 中国科学院大学博士学位论文.

    [9]

    帅 健,王晓霖,左尚志.2008.地质灾害作用下管道的破坏行为与防护对策[J]. 焊管,(5):9-15+93. doi: 10.3969/j.issn.1001-3938.2008.05.002

    [10]

    王仁超. 2019. 滑坡作用下管道变形破坏机理试验研究[D]. 中国科学院大学博士学位论文.

    [11]

    臧雪瑞,顾晓婷,王秋妍,曹 平.2020.深层圆弧滑坡作用下埋地管道有限元模型研究[J]. 能源化工,41:65-70. doi: 10.3969/j.issn.1006-7906.2020.01.015

    [12]

    中国石油天然气集团公司. 2018. SY/T 7403–2018油气输送管道应变设计规范[S]. 北京:石油工业出版社.

    [13]

    American Bureau of Shipping. 2006. ABS 2006 ABS guide for building and classing subsea pipeline systems [S]. Houston: ABS.

    [14]

    American Petroleum Institute Publishing Services. 1999. Designs, construction, operation and maintenance coffshore pipelines (Limit state design)[S]. Washington DC: API Publishing Services.

    [15]

    American Petroleum Institute. 2005. API 1104 Welding of pipelines and related facilities [S]. Washington DC: API Publishing Services.

    [16]

    Canadian Standards Association. 2007. CSA-Z662-2007 Oil and gas pipeline systems[S]. Toronto: CSA Group.

    [17]

    Liao Y, Liu C, Wang T, Xu T, Zhang J, Ge L. 2021. Mechanical behavior analysis of gas pipeline with defects under lateral landslide[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 235(23): 6752-6766.

    [18]

    O'Rourke M J, Liu X, Flores-Berrones R. 1995. Steel pipe wrinkling due to longitudinal permanent ground deformation[J]. Journal of Transportation Engineering, 121: 443-451. doi: 10.1061/(ASCE)0733-947X(1995)121:5(443)

    [19]

    Rajani B B, Robertson P K, Morgenstern N R. 1995, Simplified design methods for pipelines subject to transverse and longitudinal soil movements[J]. Canadian Geotechnical Journal, 32: 309-323.

    [20]

    Suzuki N, Igi S, Masamura K. 2008. Seismic integrity of high-strength1 pipelines[J]. JFE Technical Report, (17): 14-19.

    [21]

    DET NORSKE VERITAS. 2007. DNV OS-F101 Offshore standard- submarine pipeline systems[S]. Norway: DNV.

    [22]

    Zhang S Z, Li S Y, Chen S N, Wu Z Z, Wang R J, Duo Y Q. 2017. Stress analysis on large-diameter buried gas pipelines under catastrophic landslides[J]. Petroleum Science, 14: 579-585. doi: 10.1007/s12182-017-0177-y

  • 加载中

(15)

(2)

计量
  • 文章访问数:  67
  • PDF下载数:  6
  • 施引文献:  0
出版历程
收稿日期:  2024-03-14
修回日期:  2024-04-29
刊出日期:  2024-09-25

目录