先存构造对大陆裂谷演化的构造继承性作用

邹耀遥, 李堃, 沈传波, 刘飞, 王亮. 2024. 先存构造对大陆裂谷演化的构造继承性作用. 华南地质, 40(4): 601-618. doi: 10.3969/j.issn.2097-0013.2024.04.001
引用本文: 邹耀遥, 李堃, 沈传波, 刘飞, 王亮. 2024. 先存构造对大陆裂谷演化的构造继承性作用. 华南地质, 40(4): 601-618. doi: 10.3969/j.issn.2097-0013.2024.04.001
ZOU Yao-Yao, LI Kun, SHEN Chuan-Bo, LIU Fei, WANG Liang. 2024. The Structural Inheritance of Pre-existing Structure on the Evolution of Continental Rifts. South China Geology, 40(4): 601-618. doi: 10.3969/j.issn.2097-0013.2024.04.001
Citation: ZOU Yao-Yao, LI Kun, SHEN Chuan-Bo, LIU Fei, WANG Liang. 2024. The Structural Inheritance of Pre-existing Structure on the Evolution of Continental Rifts. South China Geology, 40(4): 601-618. doi: 10.3969/j.issn.2097-0013.2024.04.001

先存构造对大陆裂谷演化的构造继承性作用

  • 基金项目: 中国地质调查局地质调查项目(DD20240062)、国家留学基金委资助项目(202106410031)、十三五国家科技重大专项子课题(2017ZX05032-002-004)
详细信息
    作者简介: 邹耀遥(1995—),男,博士,工程师,从事盆地构造和矿田构造研究,E-mail:zouyaoyaogeo@163.com
  • 中图分类号: P541

The Structural Inheritance of Pre-existing Structure on the Evolution of Continental Rifts

  • 大陆岩石圈在多期次构造活动中形成了不同尺度、不同类型的先存构造,这些先存构造对晚期大陆裂谷的构造继承性作用深刻地影响了裂谷盆地的演化过程,塑造了裂谷的结构及相关断层的几何特征。如何准确地揭示先存构造对大陆裂谷的构造继承性影响,是裂谷盆地构造研究中的热点和难点。针对这一科学问题,本文基于前人研究成果,简要介绍了大陆裂谷盆地中岩石圈尺度和上地壳尺度的先存构造类型,以及野外地质调查、卫星遥感图像识别、地球物理资料解译等识别先存构造的主要技术方法,重点介绍了先存构造的“再活化”和“应变/应力重定向”这两类主要的构造继承性作用机制,以及其诱发的断层平面、剖面模式,阐释了先存构造的空间展布、深度和规模是决定其影响强弱的重要因素。重点展现了构造物理/数值模拟实验在先存构造-裂谷演化研究中的近期成果,讨论了模拟实验在先存构造活化机制研究和对裂谷演化影响研究中的应用前景。最后探讨了当前研究中存在的局限性,认为构建不同类型先存构造的地表-地下识别标准,开展先存构造与晚期裂谷结构的三维精细刻画和空间叠置特征研究,以及加强构造物理模拟和数值模拟的相互印证将是未来的重点研究方向。

  • 加载中
  • 图 1  裂谷盆地中主要的构造要素及先存构造类型

    Figure 1. 

    图 2  裂谷盆地中不同尺度的先存构造识别

    Figure 2. 

    图 3  先存构造对伸展断层的两种影响机制

    Figure 3. 

    图 4  先存构造的两种构造继承性机制及在平面和剖面上的主要构造特征

    Figure 4. 

    图 5  先存构造的影响随着上覆沉积地层厚度的增加在逐渐减弱

    Figure 5. 

    图 6  裂谷盆地中先存断层再活化的湿粘土物理模拟实验结果

    Figure 6. 

    图 7  裂谷盆地中的先存剪切带对晚期裂谷断层影响的物理模拟实验

    Figure 7. 

    图 8  先存断层活化的三维离散元数值模拟实验

    Figure 8. 

    表 1  全球大陆裂谷中主要的先存构造类型

    Table 1.  The main types of pre-existing structures in global continental rifts

    类型 尺度 主要影响 自然实例
    薄弱带

    控制裂谷位置和整体结构 加利福尼亚大盆地(Dunbar and Sawyer,1988),埃塞俄比亚主裂谷(Corti,2008Agostini et al.,2011),琼东南盆地(王真真等,2021Yang G X et al.,2022
    板块缝合带 控制裂谷位置和整体结构 贝加尔湖裂谷(Corti et al.,2011
    深大剪切带 中止或者分割裂谷 东非Aswa剪切带(Morley,1999a
    地幔柱 控制裂谷的主动演化 东非超级地幔柱(Celli et al.,2020
    热点构造 影响裂谷结构及断层属性 Rukwa裂谷(Hodgson et al.,2017Heilman et al.,2019
    地质体接触面

    影响裂谷相关断层的几何形态,
    使裂谷结构复杂化
    Rukwa裂谷(Kolawole et al.,2021b
    剪切带及内部变质组构 Tanganyika裂谷(Shaban et al.,2023),Rukwa裂谷(Heilman et al.,2019),Malawi裂谷(Dawson et al.,2018),Magadi裂谷(Muirhead and Kattenhorn,2018),北海裂谷盆地(Osagiede et al.,2020
    先存断层/断裂带 阿根廷Colorado盆地(Lovecchio et al.,2018),北海裂谷盆地(Whipp et al.,2014Duffy et al.,2015Deng C et al.,2017a),Turkana凹陷(Wang L et al.,2021),珠江口盆地(Ye Q et al.,2020),海拉尔盆地(刘恒麟等,2022)、苏北盆地(束宁凯等,2017),渤海湾盆地(漆家福等,2008詹润和朱光,2012
    任健等,2019刘露等,2022
    基底面理/线理 Albertine裂谷(Katumwehe et al.,2015
    下载: 导出CSV
  • [1]

    刘恒麟,李忠权,李 根,李敬生,蒙启安,彭 杨,胡懿灵,龙 伟,晏 山,万双双.2022.先存构造对断层后期生长及形态的影响:以海拉尔盆地红旗凹陷为例[J]. 地球科学,47(7):2646-2666. doi: 10.3321/j.issn.1000-2383.2022.7.dqkx202207026

    [2]

    刘 露,孙永河,陈 昌,娄 瑞,王 琦.2022.南堡凹陷4号构造带断裂活化及其对油气成藏的控制作用[J]. 石油勘探与开发,49(4):716-727. doi: 10.11698/PED.20220056

    [3]

    漆家福,邓荣敬,周心怀,张克鑫.2008.渤海海域新生代盆地中的郯庐断裂带构造[J]. 中国科学:地球科学,38(z1):19-29.

    [4]

    任 健,吕丁友,陈兴鹏,刘朋波,官大勇,苏 凯,张宏国.2019.渤海东部先存构造斜向拉伸作用及其石油地质意义[J]. 石油勘探与开发,46(3):530-541. doi: 10.11698/PED.2019.03.11

    [5]

    束宁凯,吴 林,汪新文,郭建平.2017.苏北盆地高邮凹陷基底先存断裂成因及其对新生断裂的控制[J]. 石油实验地质,39(1):8-14+23. doi: 10.11781/sysydz201701008

    [6]

    童亨茂,聂金英,孟令箭,张红波,李晓宁.2009.基底先存构造对裂陷盆地断层形成和演化的控制作用规律[J]. 地学前缘,16(4):97-104. doi: 10.3321/j.issn:1005-2321.2009.04.010

    [7]

    童亨茂,蔡东升,吴永平,李晓光,李绪深,孟令箭.2011.非均匀变形域中先存构造活动性的判定[J]. 中国科学:地球科学,41(2):158-168.

    [8]

    童亨茂,王建君,赵海涛,李 波,郝化武,王明阳.2014.“摩尔空间”及其在先存构造活动性预测中的应用[J]. 中国科学:地球科学,44(9):1948-1957.

    [9]

    王真真,朱继田,李安琪,胡潜伟,毛雪莲,尹宏伟.2021.琼东南盆地新生代东西分块差异构造演化及控藏意义[J]. 海洋地质与第四纪地质,41(4):157-169.

    [10]

    杨 林,王庆飞,赵世宇,李华健,赵鹤森,董超一,刘学飞,邓 军.2023.造山型金矿构造控矿作用[J]. 岩石学报,39(2):277-292. doi: 10.18654/1000-0569/2023.02.01

    [11]

    詹 润,朱 光.2012.济阳坳陷青东凹陷基底断裂复活规律和方式[J]. 地质论评,58(5):816-828. doi: 10.3969/j.issn.0371-5736.2012.05.003

    [12]

    Allemand P, Brun J P. 1991. Width of continental rifts and rheological layering of the lithosphere[J]. Tectonophysics, 188(1-2): 63-69. doi: 10.1016/0040-1951(91)90314-I

    [13]

    Agostini A, Corti G, Zeoli A, Mulugeta G. 2009. Evolution, pattern, and partitioning of deformation during oblique continental rifting: Inferences from lithospheric-scale centrifuge models[J]. Geochemistry, Geophysics, Geosystems, 10(11): e2009GC002676.

    [14]

    Agostini A, Bonini M, Corti G, Sani F, Mazzarini F. 2011. Fault architecture in the Main Ethiopian Rift and comparison with experimental models: implications for rift evolution and Nubia–Somalia kinematics[J]. Earth and Planetary Science Letters, 301(3-4): 479-492. doi: 10.1016/j.jpgl.2010.11.024

    [15]

    Bertrand L, Jusseaume J, Géraud Y, Diraison M, Damy P C, Navelot V, Haffen S. 2018. Structural heritage, reactivation and distribution of fault and fracture network in a rifting context: Case study of the western shoulder of the Upper Rhine Graben[J]. Journal of Structural Geology, 108: 243-255.

    [16]

    Bell J S. 1996. In situ stresses in sedimentary rocks (part 2): Applications of stress measurements[J]. Geoscience Canada, 23: 135-153.

    [17]

    Bladon A J, Clarke S M, Burley S D. 2015. Complex rift geometries resulting from inheritance of pre-existing structures: Insights and regional implications from the Barmer Basin rift[J]. Journal of Structural Geology, 71: 136-154. doi: 10.1016/j.jsg.2014.09.017

    [18]

    Bird P C, Cartwright J A, Davies T L. 2015. Basement reactivation in the development of rift basins: an example of reactivated Caledonide structures in the West Orkney Basin[J]. Journal of the Geological Society, 172(1): 77-85.

    [19]

    Bonini L, Fracassi U, Bertone N, Maesano F E, Valensise G, Basili R. 2023. How do inherited dip-slip faults affect the development of new extensional faults? Insights from wet clay analog models[J]. Journal of Structural Geology, 169: 104836. doi: 10.1016/j.jsg.2023.104836

    [20]

    Brun J P. 1999. Narrow rifts versus wide rifts: inferences for the mechanics of rifting from laboratory experiments[J]. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 357: 695-712.

    [21]

    Brune S, Corti G, Ranalli G. 2017. Controls of inherited lithospheric heterogeneity on rift linkage: Numerical and analog models of interaction between the Kenyan and Ethiopian rifts across the Turkana depression[J]. Tectonics, 36(9): 1767-1786. doi: 10.1002/2017TC004739

    [22]

    Brune S, Kolawole F, Olive J A, Stamps D S, Buck W R, Buiter S J H, Furman T, Shillington D J. 2023. Geodynamics of continental rift initiation and evolution[J]. Nature Reviews Earth and Environment, 4(4): 235-253. doi: 10.1038/s43017-023-00391-3

    [23]

    Castaing C. 1991. Post-Pan-African tectonic evolution of South Malawi in relation to the Karroo and recent East African rift systems[J]. Tectonophysics, 191(1-2): 55-73.

    [24]

    Ceccato A, Goncalves P, Menegon L. 2022. On the petrology and microstructures of small-scale ductile shear zones in granitoid rocks: an overview[J]. Journal of Structural Geology, 161: 104667. doi: 10.1016/j.jsg.2022.104667

    [25]

    Chenin P, Beaumont C. 2013. Influence of offset weak zones on the development of rift basins: Activation and abandonment during continental extension and breakup[J]. Journal of Geophysical Research: Solid Earth, 118(4): 1698-1720. doi: 10.1002/jgrb.50138

    [26]

    Celli N L, Lebedev S, Schaeffer A J, Gaina C. 2020. African cratonic lithosphere carved by mantle plumes[J]. Nature Communications, 11(1): 1-10. doi: 10.1038/s41467-019-13993-7

    [27]

    Corti G, van Wijk J, Cloetingh S, Morley C K. 2007. Tectonic inheritance and continental rift architecture: Numerical and analogue models of the East African Rift system[J]. Tectonics, 26(6): 2006TC002086.

    [28]

    Corti G. 2008. Control of rift obliquity on the evolution and segmentation of the main Ethiopian rift[J]. Nature Geoscience, 1(4): 258-262. doi: 10.1038/ngeo160

    [29]

    Corti G, Calignano E, Petit C, Sani F. 2011. Controls of lithospheric structure and plate kinematics on rift architecture and evolution: An experimental modeling of the Baikal rift[J]. Tectonics, 30(3): 2011TC002871. doi: 10.1029/2011TC002871

    [30]

    Corti G. 2012. Evolution and characteristics of continental rifting: Analog modeling-inspired view and comparison with examples from the East African Rift System[J]. Tectonophysics, 522: 1-33.

    [31]

    Corti G, Philippon M, Sani F, Keir D, Kidane T. 2013. Re-orientation of the extension direction and pure extensional faulting at oblique rift margins: Comparison between the Main Ethiopian Rift and laboratory experiments[J]. Terra Nova, 25(5): 396-404.

    [32]

    Corti G, Maestrelli D, Sani F. 2022. Large-to local-scale control of pre-existing structures on continental rifting: Examples from the Main Ethiopian Rift, East Africa[J]. Frontiers in Earth Science, 10: 808503. doi: 10.3389/feart.2022.808503

    [33]

    Collanega L, Siuda K, Jackson C A L, Bell R E, Coleman A J, Lenhart A, Magee C, Breda A. 2019. Normal fault growth influenced by basement fabrics: The importance of preferential nucleation from pre-existing structures[J]. Basin Research, 31(4): 659-687. doi: 10.1111/bre.12327

    [34]

    Dávalos-Elizondo E, Laó-Dávila D A. 2023. Structural analysis of fracture networks controlling geothermal activity in the northern part of the Malawi Rifted Zone from aeromagnetic and remote sensing data[J]. Journal of Volcanology and Geothermal Research, 433: 107713. doi: 10.1016/j.jvolgeores.2022.107713

    [35]

    Dawson S M, Laó-Dávila D A, Atekwana E A, Abdelsalam M G. 2018. The influence of the Precambrian Mughese Shear Zone structures on strain accommodation in the northern Malawi Rift[J]. Tectonophysics, 722: 53-68.

    [36]

    Deng C, Fossen H, Gawthorpe R L, Rotevatn A, Jackson C A L, FazliKhani H. 2017a. Influence of fault reactivation during multiphase rifting: The Oseberg area, northern North Sea rift[J]. Marine and Petroleum Geology, 86: 1252-1272. doi: 10.1016/j.marpetgeo.2017.07.025

    [37]

    Deng C, Gawthorpe R L, Finch E, Fossen H. 2017b. Influence of a pre-existing basement weakness on normal fault growth during oblique extension: Insights from discrete element modeling[J]. Journal of Structural Geology, 105: 44-61.

    [38]

    Deng C, Gawthorpe R L, Fossen H, Finch E. 2018. How does the orientation of a preexisting basement weakness influence fault development during renewed rifting? Insights from three-dimensional discrete element modeling[J]. Tectonics, 37(7): 2221-2242. doi: 10.1029/2017TC004776

    [39]

    Deng H D, McClay K. 2021. Three-dimensional geometry and growth of a basement-involved fault network developed during multiphase extension, Enderby Terrace, North West Shelf of Australia[J]. AAPG Bulletin, 133(9-10): 2051-2078.

    [40]

    Duffy O B, Bell R E, Jackson C A L, Gawthorpe R L, Whipp P S. 2015. Fault growth and interactions in a multiphase rift fault network: Horda Platform, Norwegian North Sea[J]. Journal of Structural Geology, 80: 99-119. doi: 10.1016/j.jsg.2015.08.015

    [41]

    Dunbar J A, Sawyer D S. 1988. Continental rifting at pre-existing lithospheric weaknesses[J]. Nature, 333(6172): 450-452.

    [42]

    Fossen H. 2016. Structural geology[M]. Cambridge: Cambridge university press.

    [43]

    Fazlikhani H, Fossen H, Gawthorpe R L, Faleide J I, Bell R E. 2017. Basement structure and its influence on the structural configuration of the northern North Sea rift[J]. Tectonics, 36(6): 1151-1177. doi: 10.1002/2017TC004514

    [44]

    Finch E, Gawthorpe R. 2017. Growth and interaction of normal faults and fault network evolution in rifts: insights from three-dimensional discrete element modelling[J]. Geological Society, London, Special Publications, 439(1): 219-248.

    [45]

    Glerum A, Brune S, Stamps D S, Strecker M R. 2020. Victoria continental microplate dynamics controlled by the lithospheric strength distribution of the East African Rift[J]. Nature Communications, 11(1): 1-15.

    [46]

    Goldfarb R J, Groves D I, Gardoll S. 2001. Orogenic gold and geologic time: a global synthesis[J]. Ore geology reviews, 18(1-2): 1-75. doi: 10.1016/S0169-1368(01)00016-6

    [47]

    Hardy S, Finch E. 2005. Discrete-element modelling of detachment folding[J]. Basin Research, 17(4): 507-520. doi: 10.1111/j.1365-2117.2005.00280.x

    [48]

    Henstra G A, Kristensen T B, Rotevatn A, Gawthorpe R L. 2019. How do pre-existing normal faults influence rift geometry? A comparison of adjacent basins with contrasting underlying structure on the Lofoten Margin, Norway[J]. Basin Research, 31(6): 1083-1097. doi: 10.1111/bre.12358

    [49]

    Heilman E, Kolawole F, Atekwana E A, Mayle M. 2019. Controls of basement fabric on the linkage of rift segments[J]. Tectonics, 38(4): 1337-1366.

    [50]

    Hodgson I, Illsley-Kemp F, Gallacher R J, Keir D, Ebinger C J, Mtelela K. 2017. Crustal structure at a young continental rift: A receiver function study from the Tanganyika Rift[J]. Tectonics, 36(12): 2806-2822. doi: 10.1002/2017TC004477

    [51]

    Hodge M, Fagereng Å, Biggs J, Mdala H. 2018. Controls on early-rift geometry: New perspectives from the Bilila-Mtakataka Fault, Malawi[J]. Geophysical Research Letters, 45(9): 3896-3905.

    [52]

    Holdsworth R E, Stewart M, Imber J, Strachan R A. 2001. The structure and rheological evolution of reactivated continental fault zones: a review and case study[J]. Geological Society, London, Special Publications, 184(1): 115-137.

    [53]

    Katumwehe A B, Abdelsalam M G, Atekwana E A. 2015. The role of pre-existing Precambrian structures in rift evolution: The Albertine and Rhino grabens, Uganda[J]. Tectonophysics, 646: 117-129. doi: 10.1016/j.tecto.2015.01.022

    [54]

    Krabbendam M, Barr T D. 2000. Proterozoic orogens and the break-up of Gondwana: why did some orogens not rift?[J]. Journal of African Earth Sciences, 31(1): 35-49. doi: 10.1016/S0899-5362(00)00071-3

    [55]

    Kolawole F, Atekwana E A, Laó‐Dávila D A, et al. 2018. Active deformation of Malawi rift's north basin Hinge zone modulated by reactivation of preexisting Precambrian Shear zone fabric[J]. Tectonics, 37(3): 683-704.

    [56]

    Kolawole F, Firkins M C, Al Wahaibi T S, Abdelsalam M G, Chindandali P R, Salima J. 2021a. Rift interaction zones and the stages of rift linkage in active segmented continental rift systems[J]. Basin Research, 33(6): 2984-3020. doi: 10.1111/bre.12592

    [57]

    Kolawole F, Phillips T B, Atekwana E A, Jackson C A L. 2021b. Structural inheritance controls strain distribution during early continental rifting, Rukwa rift[J]. Frontiers in Earth Science, 9: 707869. doi: 10.3389/feart.2021.707869

    [58]

    Kirkpatrick J D, Bezerra F H R, Shipton Z K, Do Nascimento A F, Pytharouli S I, Lunn R J, Soden A M. 2013. Scale-dependent influence of pre-existing basement shear zones on rift faulting: a case study from NE Brazil[J]. Journal of the Geological Society, 170(2): 237-247.

    [59]

    Lemna O S, Stephenson R, Cornwell D G. 2019. The role of pre-existing Precambrian structures in the development of Rukwa Rift Basin, southwest Tanzania[J]. Journal of African Earth Sciences, 150: 607-625. doi: 10.1016/j.jafrearsci.2018.09.015

    [60]

    Li C S, Yin H W, Wu C, Zhang Y C, Zhang J X, Wu Z Y, Wang W, Jia D, Guan S W, Ren R. 2021. Calibration of the discrete element method and modeling of shortening experiments[J]. Frontiers in Earth Science, 9: 636512.

    [61]

    Lovecchio J P, Rohais S, Joseph P, Bolatti N D, Kress P R, Gerster R, Ramos V A. 2018. Multistage rifting evolution of the Colorado basin (offshore Argentina): Evidence for extensional settings prior to the South Atlantic opening[J]. Terra Nova, 30(5): 359-368. doi: 10.1111/ter.12351

    [62]

    Lyon P J, Boult P J, Hillis R R, Bierbrauer K. 2007. Basement controls on fault development in the Penola Trough, Otway Basin, and implications for fault-bounded hydrocarbon traps[J]. Australian Journal of Earth Sciences, 54(5): 675-689. doi: 10.1080/08120090701305228

    [63]

    Maestrelli D, Montanari D, Corti G, Del Ventisette C, Moratti G, Bonini M. 2020. Exploring the interactions between rift propagation and inherited crustal fabrics through experimental modeling[J]. Tectonics, 39(12): e2020TC006211. doi: 10.1029/2020TC006211

    [64]

    Maestrelli D, Brune S, Corti G, Keir D, Muluneh A A, Sani F. 2022. Analog and Numerical Modeling of Rift-Rift-Rift Triple Junctions[J]. Tectonics, 41(10): e2022TC007491. doi: 10.1029/2022TC007491

    [65]

    Maestrelli D, Sani F, Keir D, Rosa A L, Muluneh A A, Brune S, Corti G. 2024. Reconciling plate motion and faulting at a rift-rift-rift triple junction[J]. Geology, 52(5): 362-366. doi: 10.1130/G51909.1

    [66]

    McConnell R B. 1972. Geological development of the rift system of eastern Africa[J]. Geological Society of America Bulletin, 83(9): 2549-2572. doi: 10.1130/0016-7606(1972)83[2549:GDOTRS]2.0.CO;2

    [67]

    McCaffrey K J W. 1997. Controls on reactivation of a major fault zone: the Fair Head–Clew Bay line in Ireland[J]. Journal of the Geological Society, 154(1): 129-133.

    [68]

    Morley C K. 1995. Developments in the structural geology of rifts over the last decade and their impact on hydrocarbon exploration[J]. Geological Society, London, Special Publications, 80(1): 1-32.

    [69]

    Morley C K. 1999a. Geoscience of rift systems—evolution of East Africa[M]. American Association of Petroleum Geologists.

    [70]

    Morley C K. 1999b. How successful are analogue models in addressing the influence of pre-existing fabrics on rift structure?[J]. Journal of Structural Geology, 21(8-9): 1267-1274. doi: 10.1016/S0191-8141(99)00075-9

    [71]

    Morley C K, Haranya C, Phoosongsee W, Pongwapee S, Kornsawan A, Wonganan N. 2004. Activation of rift oblique and rift parallel pre-existing fabrics during extension and their effect on deformation style: examples from the rifts of Thailand[J]. Journal of Structural Geology, 26(10): 1803-1829. doi: 10.1016/j.jsg.2004.02.014

    [72]

    Morley C K. 2010. Stress re-orientation along zones of weak fabrics in rifts: An explanation for pure extension in ‘oblique’rift segments?[J]. Earth and Planetary Science Letters, 297(3-4): 667-673. doi: 10.1016/j.jpgl.2010.07.022

    [73]

    Molnar N, Cruden A, Betts P. 2020. The role of inherited crustal and lithospheric architecture during the evolution of the Red Sea: Insights from three dimensional analogue experiments[J]. Earth and Planetary Science Letters, 544: 116377.

    [74]

    Muirhead J D, Kattenhorn S A. 2018. Activation of preexisting transverse structures in an evolving magmatic rift in East Africa[J]. Journal of Structural Geology, 106: 1-18. doi: 10.1016/j.jsg.2017.11.004

    [75]

    Osagiede E E, Rotevatn A, Gawthorpe R, Kristensen T B, Jackson C A L, Marsh N. 2020. Pre-existing intra-basement shear zones influence growth and geometry of non-colinear normal faults, western Utsira High–Heimdal Terrace, North Sea[J]. Journal of Structural Geology, 130: 103908. doi: 10.1016/j.jsg.2019.103908

    [76]

    Osagiede E E, Rosenau M, Rotevatn A, Gawthorpe R, Jackson C A L, Rudolf M. 2021. Influence of zones of pre-existing crustal weakness on strain localization and partitioning during rifting: Insights from analog modeling using high‐resolution 3D digital image correlation[J]. Tectonics, 40(10): e2021TC006970.

    [77]

    Peace A, McCaffrey K, Imber J, van Hunen J, Hobbs R, Wilson R. 2018. The role of pre-existing structures during rifting, continental breakup and transform system development, offshore West Greenland[J]. Basin Research, 30(3): 373-394. doi: 10.1111/bre.12257

    [78]

    Phillips T B, Jackson C A L, Bell R E, Duffy O B, Fossen H. 2016. Reactivation of intrabasement structures during rifting: A case study from offshore southern Norway[J]. Journal of Structural Geology, 91: 54-73. doi: 10.1016/j.jsg.2016.08.008

    [79]

    Phillips T B, McCaffrey K J W. 2019. Terrane boundary reactivation, barriers to lateral fault propagation and reactivated fabrics: Rifting across the median batholith zone, great South Basin, New Zealand[J]. Tectonics, 38(11): 4027-4053. doi: 10.1029/2019TC005772

    [80]

    Philippon M, Willingshofer E, Sokoutis D, Corti G, Sani F, Bonini M, Cloetingh S. 2015. Slip re-orientation in oblique rifts[J]. Geology, 43(2): 147-150.

    [81]

    Ritsema J, Heijst H J, Woodhouse J H. 1999. Complex shear wave velocity structure imaged beneath Africa and Iceland[J]. Science, 286(5446): 1925-1928. doi: 10.1126/science.286.5446.1925

    [82]

    Rajaonarison T A, Stamps D S, Naliboff J, Nyblade A, Njinju E A. 2023. A Geodynamic Investigation of Plume‐Lithosphere Interactions Beneath the East African Rift[J]. Journal of Geophysical Research: Solid Earth, 128(4): e2022JB025800. doi: 10.1029/2022JB025800

    [83]

    Riller U, Clark M D, Daxberger H, Doman D, Lenauer I, Plath S, Santimano T. 2017. Fault-slip inversions: Their importance in terms of strain, heterogeneity, and kinematics of brittle deformation[J]. Journal of Structural Geology, 101: 80-95.

    [84]

    Samsu A, Cruden A R, Micklethwaite S, Grose L, Vollgger SA. 2020. Scale matters: the influence of structural inheritance on fracture patterns[J]. Journal of Structural Geology, 130: 103896. doi: 10.1016/j.jsg.2019.103896

    [85]

    Samsu A, Micklethwaite S, Williams J N, Fagereng Å, Cruden A R. 2023. Structural inheritance in amagmatic rift basins: Manifestations and mechanisms for how pre-existing structures influence rift-related faults[J]. Earth-Science Reviews, 246: 104568. doi: 10.1016/j.earscirev.2023.104568

    [86]

    Schiffer C, Doré A, Foulger G, Franke D, Geoffroy L, Gernigon L, Holdsworth B, Kusznir N, Lundin E, Mccaffrey K, Peace A, Petersen K, Phillips T, Stephenson R, Stoker M, Welford K. 2020. Structural inheritance in the North Atlantic[J]. Earth-Science Reviews, 206: 102975. doi: 10.1016/j.earscirev.2019.102975

    [87]

    Schumacher M E. 2002. Upper Rhine Graben: role of preexisting structures during rift evolution[J]. Tectonics, 21(1): 6-1-6-17.

    [88]

    Shaban S N, Kolawole F, Scholz C A. 2023. The deep basin and underlying basement structure of the Tanganyika Rift[J]. Tectonics, 42(7): e2022TC007726.

    [89]

    Sibson R H. 1998. Brittle failure mode plots for compressional and extensional tectonic regimes[J]. Journal of Structural Geology, 20(5): 655-660. doi: 10.1016/S0191-8141(98)00116-3

    [90]

    Smets B, Delvaux D, Ross K A, Poppe S, Kervyn M, d'Oreye N, Kervyn F. 2016. The role of inherited crustal structures and magmatism in the development of rift segments: Insights from the Kivu basin, western branch of the East African Rift[J]. Tectonophysics, 683: 62-76. doi: 10.1016/j.tecto.2016.06.022

    [91]

    Tamas A, Holdsworth R E, Underhill J R, Tamas D M, Dempsey E D, Hardman K, Bird A, McCarthy D, McCaffrey K J W, Selby D. 2022. New onshore insights into the role of structural inheritance during Mesozoic opening of the Inner Moray Firth Basin, Scotland[J]. Journal of the Geological Society, 179(2): jgs2021-066.

    [92]

    Vasconcelos D L, Bezerra F H, Medeiros W E, de Castro D L, Clausen O R, Vital H, Oliveira R G. 2019. Basement fabric controls rift nucleation and postrift basin inversion in the continental margin of NE Brazil[J]. Tectonophysics, 751: 23-40. doi: 10.1016/j.tecto.2018.12.019

    [93]

    Versfelt J, Rosendahl B R. 1989. Relationships between pre-rift structure and rift architecture in Lakes Tanganyika and Malawi, East Africa[J]. Nature, 337(6205): 354-357. doi: 10.1038/337354a0

    [94]

    Wang L, Maestrelli D, Corti G, Zou Y Y, Shen C B. 2021. Normal fault reactivation during multiphase extension: Analogue models and application to the Turkana depression, East Africa[J]. Tectonophysics, 811: 228870. doi: 10.1016/j.tecto.2021.228870

    [95]

    Walter B, Géraud Y, Hautevelle Y, Diraison M, Raisson F. 2019. Fluid Circulations at Structural Intersections through the Toro‐Bunyoro Fault System (Albertine Rift, Uganda): A Multidisciplinary Study of a Composite Hydrogeological System[J]. Geofluids, (1): 8161469.

    [96]

    Walter B, Géraud Y, Bartier D, Kluska J M, Diraison M, Morlot C, Raisson F. 2018. Petrophysical and mineralogical evolution of weathered crystalline basement in western Uganda: Implications for fluid transfer and storage[J]. AAPG Bulletin, 102(6): 1035-1065. doi: 10.1306/0810171610917171

    [97]

    Wu L L, Mei L F, Paton D A, Liu Y S, Shen C B, Liu Z Q, Luo J, Min C Z, Li M H, Wen H. 2020. Basement structures have crucial influence on rift development: Insights from the Jianghan Basin, Central China[J]. Tectonics, 39(2): e2019TC005671. doi: 10.1029/2019TC005671

    [98]

    Wedmore L N J, Biggs J, Williams J N, Fagereng Å, Dulanya Z, Mphepo F, Mdala H. 2020a. Active fault scarps in southern Malawi and their implications for the distribution of strain in incipient continental rifts[J]. Tectonics, 39(3): e2019TC005834. doi: 10.1029/2019TC005834

    [99]

    Wedmore L N J, Williams J N, Biggs J, Fagereng Å, Mphepo F, Dulanya Z, Willoughby J. 2020b. Structural inheritance and border fault reactivation during active early-stage rifting along the Thyolo fault, Malawi[J]. Journal of Structural Geology, 139: 104097.

    [100]

    Whipp P S, Jackson C A L, Gawthorpe R L, Dreyer T, Quinn D. 2014. Normal fault array evolution above a reactivated rift fabric: a subsurface example from the northern Horda Platform, Norwegian North Sea[J]. Basin Research, 26(4): 523-549. doi: 10.1111/bre.12050

    [101]

    Xue L, Moucha R, Kolawole F, Muirhead J D, Scholz C A 2024. The influence of the strength of pre-existing weak zones on rift geometry and strain localization[J]. Tectonophysics, 890: 230472.

    [102]

    Ye Q, Mei L F, Shi H S, Du J Y, Deng P, Shu Y, Camanni G. 2020. The influence of pre‐existing basement faults on the Cenozoic structure and evolution of the proximal domain, northern South China Sea rifted margin[J]. Tectonics, 39(3): 2019TC005845. doi: 10.1029/2019TC005845

    [103]

    Yang G X, Yin H W, Gan J, Wang W, Zhu J T, Jia D, Xiong X F, Xu W Q. 2022. Explaining structural difference between the eastern and western zones of the Qiongdongnan Basin, northern South China Sea: Insights from scaled physical models[J]. Tectonics, 41(2): e2021TC006899.

    [104]

    Yang K J, Qi J F, Xu L W, Yu Y Q, Sun T, Shen F L, Peng L, Lv J, Zhao H T. 2024. Influence of preexisting structures on salt structures in the Kuqa Depression, Tarim Basin, Western China: Insights from seismic data and numerical simulations[J]. Basin Research, 36(1): e12850. doi: 10.1111/bre.12850

    [105]

    Zou Y Y, Maestrelli D, Corti G, Del Ventisette C, Wang L, Shen C B. 2024. Influence of inherited brittle fabrics on continental rifting: Insights from centrifuge experimental modeling and application to the East African Rift System[J]. Tectonics, 43(1): e2023TC007947.

    [106]

    Zwaan F, Chenin P, Erratt D, Manatschal G, Schreurs G. 2021. Complex rift patterns, a result of interacting crustal and mantle weaknesses, or multiphase rifting? Insights from analogue models[J]. Solid Earth, 12(7): 1473-1495. doi: 10.5194/se-12-1473-2021

    [107]

    Zwaan F, Chenin P, Erratt D, Manatschal G, Schreurs G. 2022. Competition between 3D structural inheritance and kinematics during rifting: Insights from analogue models[J]. Basin Research, 34(2): 824-854. doi: 10.1111/bre.12642

    [108]

    Zwaan F, Schreurs G. 2023. Analog Models of Lithospheric-Scale Rifting Monitored in an X-Ray CT Scanner[J]. Tectonics, 42(3): e2022TC007291. doi: 10.1029/2022TC007291

  • 加载中

(8)

(1)

计量
  • 文章访问数:  378
  • PDF下载数:  41
  • 施引文献:  0
出版历程
收稿日期:  2024-09-25
修回日期:  2024-10-08
刊出日期:  2024-12-20

目录