The Formation and Evolution of the Huangling Basement in the Yangtze Craton, South China
-
摘要:
扬子克拉通北缘的黄陵背斜核部出露的太古宙-元古宙杂岩,构成扬子克拉通黄陵基底,是研究扬子克拉通的最重要窗口。黄陵基底的组成主要包括太古宙花岗片麻岩和斜长角闪岩为主组成的陆核;古元古代孔兹岩系构成的高级地体;以及之后形成的新元古代蛇绿混杂岩、花岗岩类和基性岩脉等,是8期岩浆事件(3.2~3.0 Ga、3.0~2.8 Ga、2.8~2.6 Ga、2.3~2.2 Ga、1.85 Ga、1.0~0.97 Ga、086~0.79 Ga、0.77~0.75 Ga)、2期角闪岩相构造-热事件(2.6~2.5 Ga、2.0~1.9 Ga)和克拉通化事件等共同作用的结果。黄陵基底的形成和演化过程,经历了“水月寺运动”、“兴山运动”和“晋宁运动”的塑造和改造,并对Kenorland、Columbia和Rodinia超大陆的聚合与裂解均有响应。
Abstract:The Huangling basement, located within the Huangling dome on the northern margin of the Yangtze craton, represents the most extensive and highest-grade exposure of the Archean-Proterozoic metamorphic complex in the region. Hence, it provides an excellent opportunity for examining the formation and evolution of the Yangtze craton. The Huangling basement mainly consists of an Anchean continental nucleus of granitic gneisses and amphibolites, a Paleoproterozoic high-grade terrane sonsisting of khondalite series, and Neoproterozoic intrusive units including ophiolitic mélange, granitoid and diabase dikes, etc. It is the result of the combined effects of eight magmatic episodes (3.2~3.0 Ga, 3.0~2.8 Ga, 2.8~2.6 Ga, 2.3~2.2 Ga, 1.85 Ga, 1.0~0.97 Ga, 0.86~0.79 Ga, 0.77~0.75 Ga), two-stage amphibolite facies tectono-thermal metamorphism (2.6~2.5 Ga、2.0~1.9 Ga), and cratonization events. The formation and evolution of the Huangling basement were shaped by the “Shuiyuesit Movement”, “Xingshan Movement” and "Jinning Movement”, while recording the response to the amalgamation and break-up of the Kenorland, Columbia and Rodinia supercontinents.
-
-
表 1 扬子克拉通约2.5 Ga锆石U-Pb年龄信息
Table 1. Zircon U-Pb age of about 2.5 Ga from the Yangtze craton
构造
单元采样位位置或
岩石单元岩石类型 锆石成因
或来源207Pb / 206 Pb年龄(Ma) 数据来源 黄
陵
陆
核水月寺 辉绿岩脉 变质锆石 2466 ±66,2557 ±27魏君奇等,2009;
赵敏等,2012殷家坪 辉绿岩脉 变质锆石 2517 ±94Wei J Q et al., 2020 野马洞 斜长角闪岩 变质锆石 2558 ±40,2583 ±240魏君奇和王建雄,2012;
Wei J Q et al., 2020南华系、震旦系 碎屑岩类 碎屑锆石 2490 峰值Liu X M et al., 2008 南
秦
岭
构
造
带鱼洞子杂岩 磁铁石英岩 变质锆石 2555 ±24王洪亮等,2011 黑云斜长片麻岩 岩浆锆石 2448 ±8Hui B et al., 2017 花岗片麻岩 岩浆锆石 2471 ±23,2477 ±18,2516 ±49Hui B et al., 2017;
Chen Q et al., 2019TTG片麻岩 变质锆石 2488 ±50,2501 ±29,2503 ±35,2513 ±38Chen Q et al., 2019 陡岭杂岩 TTG片麻岩 岩浆锆石 2469 ±22,2479 ±12,2496 ±25,2497 ±212501 ±17,2509 ±14,2516 ±22胡娟等,2013;
Wu Y B et al., 2014变质锆石 2460 ±21胡娟等,2013 黑云斜长片麻岩 碎屑锆石 2480 峰值胡娟等,2013 碧口地体 横丹群浊积岩 碎屑锆石 2492 ±26Sun W H et al., 2009 龙草坪杂岩 TTG片麻岩 岩浆锆石 2503 ±40,2506 ±24李亚林等,2000 武当群 石英砂岩 碎屑锆石 2555 凌文黎等,2010 神农架
地块神农架群 硅质白云岩 碎屑锆石 2471 ±4,2472 ±19,2491 ±4,2498 ±4,2509 ±122527 ±13,2534 ±4,2544 ±13,2546 ±16李怀坤等,2013 大别
地块南黄杂岩 TTG片麻岩 岩浆锆石 2493 ±19涂荫玖等,2001 潜山县双河 榴辉岩 变质锆石 2489 ±25陈道公等,2002 康
滇
古
陆康定杂岩 花岗片麻岩 残留锆石 2468 ±11陈岳龙等,2004 会理群 粗粒砂岩 碎屑锆石 2494 ±26Sun W H et al., 2009 盐边群 砂岩 碎屑锆石 2551 ±31,2456 ±46,2496 ±18Sun W H et al., 2009;
Chen Q et al., 2016澄江组 紫色砂岩 碎屑锆石 2447 ±28,2478 ±23,2558 ±25Wang L J et al., 2012 陡山沱组 砂岩 碎屑锆石 2492 ±22Wang L J et al., 2012 昆阳群 砂岩 碎屑锆石 2446 ±29,2526 ±37Wang L J et al., 2012 大红山群 石英黑云母片岩 碎屑锆石 2571 Greentree and Li Z X, 2008 东川群 石英岩、千枚岩 碎屑锆石 2500 峰值Li H K et al., 2013 角砾岩、砂岩 碎屑锆石 2439 ±32,2457 ±30,2462 ±2,2491 ±29,2491 ±27Zhao X F et al., 2010 江
南
古
陆下江群 砂岩 碎屑锆石 2476 ±27,2498 ±24,2499 ±24Wang L J et al., 2010 贵州镇远 煌斑岩 捕获锆石 2576 ±9Zheng J P et al., 2006 板溪群 凝灰质砂岩 碎屑锆石 2477 ±34,2484 ±7,2503 ±3Wang X C et al., 2012 丹洲群 粉砂岩 碎屑锆石 2535 ±21Wang X C et al., 2012 沧水铺群 安山质火山岩 碎屑锆石 2495 ±27Zhang Y Z et al., 2015 高涧群 变玄武岩 捕获锆石 2524 ±80甘晓春等,1996 宁乡火山岩 煌斑岩 捕获锆石 2485 ±8,2487 ±8,2492 ±8,2525 ±7Zheng J P et al., 2006 南华系 沉凝灰岩 碎屑锆石 2457 ±64尹崇玉等,2003 双桥山群 石英砂岩、板岩 碎屑锆石 2495 ±45,2498 ±71,2510 ±33,2530 ±34,2545 ±38Zhao J H et al., 2011 梵净山群 火山岩 捕获锆石 2526 ±6Zhao J H et al., 2011 砂岩、片岩 碎屑锆石 2466 ±25,2470 ±32,2474 ±22,2483 ±13,2487 ±162491 ±29,2494 ±24,2496 ±23,2496 ±29,2497 ±72499 ±21,2503 ±45,2521 ±7,2527 ±34,2535 ±26Wang L J et al., 2010;
Zhao J H et al., 2011冷家溪群 砂岩、千枚岩 碎屑锆石 2496 ±24,2503 ±19Zhao J H et al., 2011 变玄武岩 捕获锆石 2530 ±22甘晓春等,1996 -
[1] 陈道公,Deloule E,夏群科,吴元保,程 昊.2002.大别山双河超高压榴辉岩中变质锆石:离子探针和微区结构研究[J]. 岩石学报,18(3):369-377. doi: 10.3321/j.issn:1000-0569.2002.03.012
[2] 陈汉宗.1987.鄂东北早前寒武系地质年代学研究[J]. 地球化学,2:153-160. doi: 10.3321/j.issn:0379-1726.1987.02.006
[3] 陈岳龙,罗照华,赵俊香,李志红,张宏飞,宋 彪.2004.从锆石SHRIMP年龄及岩石地球化学特征论四川冕宁康定杂岩的成因[J]. 中国科学D辑:地球科学,34(8):687-697.
[4] 陈志强.1985.论大别运动[J]. 地质论评,31(6):518-524. doi: 10.3321/j.issn:0371-5736.1985.06.005
[5] 丁道桂,郭彤楼,刘运黎,翟常博.2007.对江南-雪峰带构造属性的讨论[J]. 地质通报,26(7):801-809. doi: 10.3969/j.issn.1671-2552.2007.07.003
[6] 邓 奇,王 剑,汪正江,邱艳生,杨青雄,江新胜,杜秋定.2013.扬子北缘元古宇马槽园群时代归属新证据—对地层对比和古地理格局的启示[J]. 地质通报,32(4):631-638. doi: 10.3969/j.issn.1671-2552.2013.04.011
[7] 邓 奇,王 剑,汪正江,崔晓庄,施美凤,杜秋定,马 龙,廖世勇,任光明.2016.江南造山带新元古代中期(830-750 Ma)岩浆活动及对构造演化的制约[J]. 大地构造与成矿学,40(4):753-771.
[8] 付 强,魏君奇,范堡程,裴康达.2023.扬子克拉通古元古代变质演化—来自黄陵穹窿石榴斜长角闪岩的证据[J]. 岩石矿物学杂志,42(2):173-190.
[9] 甘晓春,赵风清,金文山,孙大中.1996.华南火成岩中捕获锆石的早元古代-太古宙U-Pb年龄信息[J]. 地球化学,25(2):112-120. doi: 10.3321/j.issn:0379-1726.1996.02.002
[10] 高 山,张本仁.1990.扬子地台北部太古宙TTG片麻岩的发现及其意义[J]. 地球科学-中国地质大学学报,15(6):675-679.
[11] 胡 娟,刘晓春,陈龙耀,曲 玮,李怀坤,耿建珍.2013.扬子克拉通北缘约2.5Ga岩浆事件:自南秦岭陡岭杂岩锆石U-Pb年代学和Hf同位素证据[J]. 科学通报,58(34):3579-3588.
[12] 胡正祥,刘早学,张焱林,毛新武,冉瑞生,廖宗明,刘成新.2012.扬子地块北缘前南华纪神农架群底界的厘定及其地质意义[J]. 资源环境与工程,26(3):201-208. doi: 10.3969/j.issn.1671-1211.2012.03.001
[13] 姜继圣.1986.黄陵变质地区的同位素地质年代与地壳演化[J]. 长春地质学院学报,3:1-11.
[14] 蒋幸福. 2014. 扬子克拉通黄陵背斜庙湾蛇绿杂岩成因及大地构造意义[D]. 中国地质大学(武汉)博士学位论文.
[15] 焦文放,吴元保,彭 敏,汪 晶,杨赛红.2009.扬子板块最古老锆石U-Pb年龄和Hf 同位素组成[J]. 中国科学D辑:地球科学,39(7):972-978.
[16] 旷红伟,耿元生,柳永清,王玉冲,夏晓旭,彭 南,范正秀,陈骁帅,白华青.2019.扬子克拉通北缘“神农架群底界”的再厘定及其地层学意义[J]. 地质学报,93(1):72-93. doi: 10.3969/j.issn.0001-5717.2019.01.005
[17] 李怀坤,张传林,相振群,陆松年,张 健,耿建珍,瞿乐生,王志先.2013.扬子克拉通神农架群锆石和斜锆石U-Pb年代学及其构造意义[J]. 岩石学报,29(2):673-697.
[18] 李福喜,聂学武.1987.黄陵断隆北部崆岭群地质时代及地层划分[J]. 湖北地质,1(1):28-41.
[19] 李福喜,聂学武,胡正祥,院祚兴.1989.试论黄陵断隆北缘中、下元古界的不整合关系[J]. 湖北地质,3(1):43-56.
[20] 李江海.1998.前寒武纪的超大陆旋回及其板块构造演化意义[J]. 地学前缘,5(增刊):141-151.
[21] 李献华,李武显,何 斌.2012.华南陆块的形成与Rodinia超大陆聚合-裂解—观察、解释与检验[J]. 矿物岩石地球化学通报,31(6):543-559. doi: 10.3969/j.issn.1007-2802.2012.06.002
[22] 李亚林,王根宝,王成善,常 红.2000.南秦岭龙草坪结晶杂岩锆石U-Pb同位素地质年代学研究[J]. 矿物学报,20(1):50-54. doi: 10.3321/j.issn:1000-4734.2000.01.009
[23] 李志昌,王桂华,张自超.2002.鄂西黄陵花岗岩基同位素年龄谱[J]. 华南地质与矿产,3:19-28.
[24] 廖宗明,姚 燕,胡章章,胡 明,陈长江.2016.湖北黄陵断穹北部东冲河石墨矿地质特征与选矿工艺[J]. 资源环境与工程,30(5):681-685.
[25] 凌文黎,高 山,郑海飞,周 炼,赵祖斌.1998.扬子克拉通黄陵地区崆岭杂岩Sm-Nd同位素地质年代学研究[J]. 科学通报,43(1):86-89. doi: 10.3321/j.issn:0023-074X.1998.01.022
[26] 凌文黎,程建萍,高 山,张本仁,骆庭川.1999.扬子崆岭新太古代壳-幔地球化学特征及其与华北克拉通、大别造山带的对比[J]. 地球科学,24(3):240-245. doi: 10.3321/j.issn:1000-2383.1999.03.004
[27] 凌文黎,高 山,张本仁,周 炼,徐启东.2000.扬子陆核古元古代晚期构造热事件与扬子克拉通演化[J]. 科学通报,45(21):243-248. doi: 10.3321/j.issn:0023-074X.2000.21.019
[28] 凌文黎,段瑞春,柳小明,程建萍,毛新武,彭练红,刘早学,杨红梅,任邦方.2010.南秦岭武当山群碎屑锆石U-Pb年代学及其地质意义[J]. 科学通报,55(12):1153-1161.
[29] 柳小明,高 山,凌文黎,袁洪林,胡兆初.2005.扬子克拉通35亿年碎屑锆石的发现及其地质意义[J]. 自然科学进展,15(11):1334-1337. doi: 10.3321/j.issn:1002-008X.2005.11.009
[30] 刘 浩,徐大良,魏运许,彭炼红,邓 新,赵小明,陈铁龙,柯贤忠.2017.扬子陆核白竹坪火山岩建造形成时代的重新厘定—来自LA-ICP-MS锆石U-Pb年代学的证据[J]. 地层学杂志,41(3):318-326.
[31] 刘玉秀.1987.宜昌黄陵背斜北部崆岭群变质作用的矿物共生分析[J]. 湖北地质,1(1):79-84.
[32] 刘云勇,姚 敬.2017.湖北黄陵断穹北部石墨矿形成机制探讨[J]. 资源环境与工程,31(5):536-540.
[33] 马大铨,李志昌,肖志发.1997.鄂西崆岭杂岩的组成、时代及地质演化[J]. 地球学报,18(1):233-241.
[34] 马大铨,杜绍华,肖志发.2002.黄陵花岗岩基的成因[J]. 岩石矿物学杂志,21(2):151-161. doi: 10.3969/j.issn.1000-6524.2002.02.009
[35] 邱 凤,高建营,裴 银,张美云.2015.黄陵背斜石墨矿地质特征及成矿规律[J]. 资源环境与工程,2015,29(3):280-285.
[36] 邱啸飞,杨红梅,张利国,赵小明,段桂玲,卢山松,谭娟娟,施 念.2015a.扬子陆块庙湾蛇绿岩中橄榄岩的同位素年代学及其构造意义[J]. 地球科学-中国地质大学学报,40(7):1121-1128.
[37] 邱啸飞,杨红梅,卢山松,谭娟娟,蔡应雄.2015b.扬子陆核古元古代 A 型花岗岩的年代学与地球化学研究及其构造意义[J]. 现代地质,29(4):884-895.
[38] 邱啸飞,杨红梅,卢山松,张利国,段瑞春,杜国民.2016.扬子克拉通崆岭杂岩孔兹岩系同位素年代学研究及其地质意义[J]. 大地构造与成矿学,40(3):549-558.
[39] 邱啸飞,赵小明,杨红梅,魏运许,吴年文,卢山松,江 拓,彭练红.2017.扬子陆核古元古代变质事件——来自孔兹岩系变质锆石U-Pb同位素年龄的证据[J]. 地质通报,36(5):706-714. doi: 10.3969/j.issn.1671-2552.2017.05.003
[40] 邱啸飞,杨红梅,赵小明,卢山松,江 拓,段瑞春,刘重芃,彭练红,魏运许.2019.扬子克拉通崆岭杂岩新太古代花岗片麻岩成因及其构造意义[J]. 地质通报,44(2):415-426.
[41] 邱艳生,胡正祥,杨青雄,周世卿,田望学,李雄伟.2013.华南“马槽园组”年代及其地层学意义[J]. 资源环境与工程,27(3):328-334. doi: 10.3969/j.issn.1671-1211.2013.03.024
[42] 田成胜,黄如生,张清平.2011.湖北省夷陵区石墨矿地质特征及找矿前景分析[J]. 资源环境与工程,25(4):310-312. doi: 10.3969/j.issn.1671-1211.2011.04.005
[43] 田 辉,李怀坤.2022.扬子克拉通中元古代年代地层序列厘定[J]. 华北地质,45(1):69-91.
[44] 涂荫玖,杨晓勇,郑永飞,李惠民.2001.皖东南黄片麻岩的锆石U-Pb年龄[J]. 岩石学报,17(1):157-160. doi: 10.3969/j.issn.1000-0569.2001.01.016
[45] 王洪亮,徐学义,陈隽璐,闫 臻,李 婷,朱 涛.2011.南秦岭略阳鱼洞子岩群磁铁石英岩形成时代的锆石U-Pb年代学约束[J]. 地质学报,85(8):1284-1290.
[46] 魏君奇,王建雄,王晓地,单沐阳,郭海明.2009.黄陵地区崆岭群中基性岩脉的定年及意义[J]. 西北大学学报(自然科学版),39(3):466-471.
[47] 魏君奇,王建雄.2012.崆岭杂岩中斜长角闪岩包体的锆石年龄和Hf同位素组成[J]. 高校地质学报,18(4):589-600. doi: 10.3969/j.issn.1006-7493.2012.04.001
[48] 魏君奇,景明明.2013.崆岭杂岩中角闪岩类的年代学和地球化学[J]. 地质科学,48(4):970-983. doi: 10.3969/j.issn.0563-5020.2013.04.002
[49] 熊成云,韦昌山,金光富,谭文清,李文羡.2004.鄂西黄陵背斜地区前南华纪古构造格架及主要地质事件[J]. 地质力学报,10(2):97-112.
[50] 杨道政,李金华.1990.鄂西崆岭群微古植物的发现及其时代探讨[J]. 中国区域地质,(1):90-94.
[51] 杨金香.2007.黄陵地区孔兹岩系岩石学特及变质作用探讨[J]. 资源环境与工程,21(3):226-230. doi: 10.3969/j.issn.1671-1211.2007.03.002
[52] 易承生.2017.湖北省宜昌地区黄陵断穹核北部含石墨地层岩性研究[J]. 中国非金属矿工业导刊,(4):46-49. doi: 10.3969/j.issn.1007-9386.2017.04.015
[53] 尹崇玉,刘敦一,高林志,王自强,邢裕盛,简 平,石玉若.2003.南华系底界与古城冰期的年龄:SHRIMPⅡ定年证据[J]. 科学通报,48(16):1720-1725.
[54] 于津海,O’Reilly Y S,王丽娟,Griffin W L,蒋少涌,王汝成,徐夕生.2007.华夏地块古老物质的发现和前寒武纪地壳的形成[J]. 科学通报,52(1):11-18. doi: 10.3321/j.issn:0023-074X.2007.01.002
[55] 张国伟,郭安林,王岳军,李三忠,董云鹏,刘少峰,何登发,程顺有,鲁如魁,姚安平.2013.中国华南大陆构造与问题[J]. 中国科学:地球科学,43(10):1553-1582.
[56] 张少兵,郑永飞.2007.扬子陆核的生长和再造:锆石U-Pb年龄和Hf同位素研究[J]. 岩石学报,23(2):393-402.
[57] 张彦杰,周效华,廖胜兵,张晓东,武 彬,王存智,余明刚.2010.皖赣鄣公山地区新元古代地壳组成及造山过程[J]. 地质学报,84(10):1401-1427.
[58] 张业明,熊成云,韦昌山.1996.关于大别运动的新认识[J]. 地球学报,17(1):11-18.
[59] 张玉芝,王岳军,范蔚茗,张爱梅,张菲菲.2011.江南隆起带新元古代碰撞结束时间:沧水铺砾岩上下层位的U-Pb年代学证据[J]. 大地构造与成矿学,35(1):32-46. doi: 10.3969/j.issn.1001-1552.2011.01.004
[60] 赵 敏,魏君奇,王建雄.2012.黄陵野马洞基性岩脉中锆石的U-Pb年龄和Hf同位素组成[J]. 华南地质与矿产,28(2):124-131.
[61] 郑永飞,张少兵.2007.华南前寒武纪大陆地壳的形成和演化[J]. 科学通报,31(1):27-35. doi: 10.3321/j.issn:0023-074X.2007.01.005
[62] 周金城,王孝磊,邱检生. 2014. 江南造山带新元古代构造-岩浆演化[M]. 北京:科学出版社.
[63] 周忠友,杨金香,周汉文,江麟生.2007.湖北黄陵杂岩在Rodinia超大陆演化中的意义[J]. 资源环境与工程,21(4):380-384. doi: 10.3969/j.issn.1671-1211.2007.04.005
[64] Chen K, Gao S, Wu Y B, Guo J L, Hu Z C, Liu Y S, Zong K Q, Liang Z W, Geng X L. 2013. 2.6-2.7 Ga crustal growth in Yangtze craton, South China[J]. Precambrian Research, 224: 472-490.
[65] Chen Q, Sun M, Long X P, Zhao G C, Yuan C. 2016. U-Pb ages and Hf isotopic record of zircons from the late Neoproterozoic and Silurian-Devonian sedimentary rocks of the western Yangtze Block: implications for its tectonic evolution and continental affinity[J]. Gondwana Research, 31: 184-199.
[66] Chen Q, Sun M, Zhao G C, Zhao J H, Zhu W L, Long X P, Wang J. 2019. Episodic crustal growth and reworking of Yudongzi terrane, South China: Constraints from the Archean TTGs and postassic granites and Paleoproterozoic amphibolites[J]. Lithos, 326-327: 1-18.
[67] Chen Y, Peng S B, Kusky T M, Jing X F, Wang L. 2012. Granulite facies metamorphic age and tectonic implications of BIFs from the Kongling group in the Northern Huangling anticline[J]. Journal of Earth Science, 23(5): 648-658.
[68] Deng H, Peng S B, Polat A, Kusky T M, Jiang X F, Han Q S, Wang L, Huang Y, Wang J P, Zen W, Hu Z X. 2017. Neoproterozoic IAT intrusion into Mesoproterozoic MOR Miaowan ophiolite, Yangtze craton: Evidence for evolving tectonic settings[J]. Precambrian Research, 289: 75-94.
[69] Dong Y P, Zhang G W, Neubauer F, Liu X M, Genser J, Hauzenberger C. 2011. Tectonic evolution of Qinling orogen, China: Review and synthesis[J]. Journal of Asian Earth Sciences, 41(3): 213-237.
[70] Dong Y P, Sun S S, Yang Z, Liu X M, Zhang F F, Li W, Cheng B, He D F, Zhang G W. 2017. Neoproterozoic subduction-accretionary tectonics of the South Qinling Belt, China[J]. Precambrian Research, 293: 73-90. doi: 10.1016/j.precamres.2017.02.015
[71] Gao S, Qiu Y M, Ling W L, McNaughton N J, Groves D I. 2001. SHRIMP single zircon U-Pb dating of the Kongling high-grade metamorphic terrain: Evidence for >3.2 Ga old continental crust in the Yangtze craton[J]. Science in China (Series D: Earth Sciences), 44(4): 326-335.
[72] Gao S, Yang J, Zhou L, Li M, Hu Z C, Guo J L, Yuan H L, Gong H J, Xiao G Q, Wei J Q. 2011. Age and growth of the Archean Kongling terrain, South China, with emphasis on 3.3 Ga granitoid gneisses[J]. American Journal of science, 311(2): 153-182. doi: 10.2475/02.2011.03
[73] Geng Y S, Du L L, Kuang H W, Liu Y Q. 2020. Ca. 1.7 Ga magmatism on Southwestern margin of the Yangtze block: Response to the breakup of Columbia[J]. Acta Geologica Sinica (English Edition), 94(6): 2031-2052. doi: 10.1111/1755-6724.14614
[74] Greentree M R, Li Z X. 2008. The oldest known rocks in south-western China: SHRIMP U-Pb magmatic crystallisation age and detrital provenance analysis of the Paleoproterozoic Dahongshan Group[J]. Journal of Asian Earth Sciences, 33: 289-302. doi: 10.1016/j.jseaes.2008.01.001
[75] Guo J L, Gao S, Wu, Y B, Li M, Chen K, Hu Z C, Liang Z W, Liu Y S, Zhou L, Zong K Q, Zhang W, Chen H H. 2014. 3.45 Ga granitic gneisses from the Yangtze Craton, South China: implications for Early Archean crustal growth[J]. Precambrian Research, 242: 82-95. doi: 10.1016/j.precamres.2013.12.018
[76] Guo J L, Wu Y B, Gao S, Jin Z M, Zong K Q, Hu Z C, Chen K, Chen H H, Liu Y S. 2015. Episodic Paleoarchean-Paleoproterozoic (3.3–2.0Ga) granitoid magmatism in Yangtze Craton, South China: implications for late Archean tectonics[J]. Precambrian Research, 270: 246-266. doi: 10.1016/j.precamres.2015.09.007
[77] Han Q S, Peng S B, Kusky T M, Polat A, Jiang X F, Cen Y, Liu S F, Deng H. 2017. A Paleoproterozoic ophiolitic mélange, Yangtze craton, South China: Evidence for Paleoproterozoic suturing and microcontinent amalgamation[J]. Precambrian Research, 293: 13-38. doi: 10.1016/j.precamres.2017.03.004
[78] Hui B, Dong Y P, Cheng C, Long X P, Liu X M, Yang Z, Sun S S, Zhang F F, Varga J. 2017. Zircon U-Pb chronology, Hf isotope analysis and whole-rock geochemistry for the Neoarchean-Paleoproterozoic Yudongzi Complex in the northwestern margin of the Yangtze craton, China[J]. Precambrian Research, 301: 65-85. doi: 10.1016/j.precamres.2017.09.003
[79] Hui B, Dong Y P, Zhang F F, Sun S S, Liu X M, Cheng C, He D F. 2019. Geochronology and geochemistry of ca. 2.48 Ga granitoid gneisses from the Yudongzi Complex in the north-western Yangtze Block, China[J]. Geological Journal, 54(2): 879-896. doi: 10.1002/gj.3396
[80] Jiang X F, Peng S B, Polat A, Kusky T M, Wang L, Wu T Y, Lin M S, Han Q S. 2016. Geochemistry and geochronology of mylonitic metasedimentary rocks associated with the Proterozoic Miaowan Ophiolite Complex, Yangtze craton, China: Implications for geodynamic events[J]. Precambrian Research, 279: 37-56. doi: 10.1016/j.precamres.2016.04.004
[81] Li H K, Zhang C L, Yao C Y, Xiang Z Q. 2013. U-Pb zircon age and Hf isotope compositions of Mesoproterozoic sedimentary strata on the western margin of the Yangtze massif[J]. Science China: Earth Sciences, 56(4): 628-639. doi: 10.1007/s11430-013-4590-9
[82] Li X H. 1999. U-Pb zircon ages of granites from the southern margin of the Yangtze Block: Timing of Neoproterozoic Jinning Orogeny in SE China and implications for Rodinia assembly[J]. Precambrian Research, 97(1-2): 43-57. doi: 10.1016/S0301-9268(99)00020-0
[83] Liu X M, Gao S, Diwu C R, Ling W L. 2008. Precambrian crustal growth of Yangtze craton as revealed by detrital zircon studies[J]. American Journal of Science, 308: 421-468. doi: 10.2475/04.2008.02
[84] Lu S S, Qiu X F, Jiang T, Peng L H, Zhao X M, Wei Y X, Duan R C, Wu N W. 2017. 2.2 Ga subduction-related mafic magmatic rocks in the Kongling complex: evidence for the assembly of the Columbia supercontinent[J]. Acta Geologica Sinica (English Edition), 91(5): 1926-1927. doi: 10.1111/1755-6724.13426
[85] Lu K, Li X H, Zhou J L, Peng S B, Deng H, Guo S, Yang C, Wu L G. 2020. Early Neoproterozoic assembly of the Yangtze Block decoded from metasedimentary rocks of the Miaowan complex[J]. Precambrian Research, 364: 105787.
[86] Peng M, Wu Y B, Wang J, Jiao W F, Liu X C, Yang SH. 2009. Paleoproterozoic mafic dyke from Kongling terrain in the Yangtze Craton and its implication[J]. China Science Bulletin, 54(6): 1098-1104. doi: 10.1007/s11434-008-0558-0
[87] Peng M, Wu Y B, Gao S, Zhang H F, Wang J, Liu X C, Gong H J, Zhou L, Hu Z C, Liu Y S, Yuan H L. 2012. Geochemistry, zircon U-Pb age and Hf isotope compositions of Paleoproterozoic aluminous A-type granites from the Kongling terrain, Yangtze Block: constraints on petrogenesis and geologic implications[J]. Gondwana Research, 22(1): 140-151. doi: 10.1016/j.gr.2011.08.012
[88] Qiu X F, Ling W L, Liu X M, Kusky T, Berkana W, Zhang Y H, Gao Y J, Lu S S, Kuang H, Liu C X. 2011. Recognition of Grenvillian volcanic suit in the Shangnongjia region and its tectonic significance for the South China Craton[J]. Precambrian Research, 191(3-4): 101-119. doi: 10.1016/j.precamres.2011.09.011
[89] Qiu Y M, Gao S, McNaughton N J, Groves D I, Ling W L. 2000. First evidence of >3.2 Ga continental crust in the Yangtze craton of south China and its implications for Archean crustal evolution and Phanerozoic tectonics[J]. Geology, 28: 11-14.
[90] Shi Z J, Li W L, Zhang J, Tian Y M, Wang Y, Yin G, Luo Q C. 2020. Major tectono-thermal events in the Yangtze craton: insights from U-Pb-Lu-Hf isotope records in zircons from End-Permian volcanic interlayers in Southwest China[J]. Acta Geologica Sinica (English Edition), 94(6): 2053-2076. doi: 10.1111/1755-6724.14615
[91] Sun W H, Zhou M F, Gao J F, Yang Y H, Zhao X F, Zhao J H. 2009. Detrital zircon U-Pb geochronological and Lu-Hf isotopic constraints on the Precambrian magmatic and crustal evolution of the western Yangtze Block, SW China[J]. Precambrian Research, 172(1-2): 99-126. doi: 10.1016/j.precamres.2009.03.010
[92] Wang K, Dong S W, Yao W H, Zhao T Y. 2020. Nature and evolution of Pre-Neoproterozoic continental crust in South China: A review and tectonic implications[J]. Acta Geologica Sinica (English Edition), 94(6): 1731-1756. doi: 10.1111/1755-6724.14601
[93] Wang L J, Griffin W L, Yu J H, O’Reilly S Y. 2010. Precambrian crustal evolution of the Yangtze Block tracked by detrital zircons from Neoproterozoic sedimentary rocks[J]. Precambrian Research, 177(1-2): 131-144.
[94] Wang L J, Yu J H, Griffin W L, O’Reilly S Y. 2012. Early crustal evolution in the western Yangtze Block: Evidence from U-Pb and Lu-Hf isotopes on detrital zircons from sedimentary rocks[J]. Precambrian Research, 222-223: 368-385.
[95] Wang W, Zhou M F, Yan D P, Li J W. 2012. Depositional age, provenance, and tectonic setting of the Neoproterozoic Sibao Group, southeastern Yangtze Block, South China[J]. Precambrian Research, 192-195: 107-124.
[96] Wang X C, Li X H, Li Z X, Li Q L, Tang G Q, Gao Y Y, Zhang Q R, Liu Y. 2012. Episodic Precambrian crust growth: evidence from U-Pb ages a Hf-O isotopes of zircon in the Nanhua Basin, central South China[J]. Precambrian Research, 222-223: 386-403. doi: 10.1016/j.precamres.2011.06.001
[97] Wang X L, Zhou J C, Griffin W L, Wang R C, Qiu J S, O’Reilly S Y, Xu X S, Liu X M, Zhang G L. 2007. Detrital zircon geochronology of Precambrian basement sequences in the Jiangnan orogen: dating the assembly of the Yangtze and Cathysia blocks[J]. Precambrian Research, 159(1-2): 117-131. doi: 10.1016/j.precamres.2007.06.005
[98] Wu Y B, Zhou G Y, Gao S, Liu X C, Qin Z W, Wang H, Yang J Z, Yang S H. 2014. Petrogenesis of Neoarchean TTG rocks in the Yangtze craton and its implication for the formation of Archean TTGs[J]. Precambrian Research, 254: 73-86. doi: 10.1016/j.precamres.2014.08.004
[99] Wei Y X, Peng S P, Jing X F, Peng Z Q, Peng L H, Li Z H, Zhou P, Zeng X W. 2012. SHRIMP zircon U-Pb ages and geochemical characteristics of the Neoproterozoic granitoids in the Huangling anticline and its tectonic setting[J]. Journal of Earth Science, 23(5): 659-675. doi: 10.1007/s12583-012-0284-z
[100] Wei J Q, Wei Y X, Wang J X, Wang X D. 2020. Geochronological constraints on the formation and evolution of the Huangling basement in the Yangtze craton, South China[J]. Precambrian Research, 342: 105707. doi: 10.1016/j.precamres.2020.105707
[101] Wei J Q. 2021. Petrology and geochemistry of the Archean Huangling greenstone belt in the Yangtze Craton, South China[J]. Precambrian Research, 364: 106340. doi: 10.1016/j.precamres.2021.106340
[102] Xu D L, Wei Y X, Peng L H, Deng X, Hu K, Liu H. 2017. A ca. 2.2 Ga acidic magmatic event at the Northern margin of the Yangtze craton: evidence form U-Pb dating and Hf isotope analysis of zircons from the Kongling complex[J]. Acta Geologica Sinica (English Edition), 92(2): 872-873.
[103] Xiong Q, Zheng J P, Yu C M, Su Y P, Tang H Y, Zhang Z H. 2009. Zircon U-Pb age and Hf isotope of Quanyishang A-type granite in Yichang: signification for the Yangtze continental cratonization in Paleoproterozoic[J]. Chinese Science Bulletin, 54: 436-446.
[104] Yin C Q, Lin S F, Davis D W, Zhao G C, Xiao W J, Li L M, He Y H. 2013. 2.1-1.85 Ga tectonic events in the Yangtze Block, South China: Petrological and geochronological evidence from the Kongling Complex and implication for the reconstruction of supercontinent Columbia[J]. Lithos, 182-183: 200-210. doi: 10.1016/j.lithos.2013.10.012
[105] Zhang S B, Zheng Y F, Wu Y B, Zhao Z F, Gao S, Wu F Y. 2006a. Zircon isotope evidence for ≥3.5 Ga continental crust in the Yangtze craton of China[J]. Precambrian Research, 146: 16-34.
[106] Zhang S B, Zheng Y F, Wu Y B, Zhao Z F, Gao S, Wu F Y. 2006b. Zircon U-Pb age and Hf isotope evidence for 3.8 Ga crustal remnant and episodic reworking of Archean crust in South China[J]. Earth and Planetary Science Letters, 252: 56-71.
[107] Zhang S B, Zheng Y F, Wu Y B, Zhao Z F, Gao S, Wu F Y. 2006c. Zircon U-Pb age and Hf-O isotope evidence for Paleoproterozoic metamorphic event in South China[J]. Precambrian Research, 151: 265-288. doi: 10.1016/j.precamres.2006.08.009
[108] Zhai M G. 2011. Cratonization and the Ancient North China Continent: A summary and review[J]. Science China: Earth Sciences, 54: 1110-1120.
[109] Zhao X F, Zhou M F, Li J W, Sun M, Gao J F, Sun W H, Yang J H. 2010. Late Paleoproterozoic to early Mesoproterozoic Dongchuan Group in Yunnan, SW China: Implications for tectonic evolution of the Yangtze Block[J]. Precambrian Research, 182(1-2): 57-69.
[110] Zhao J H, Zhou M F, Yan D P, Zheng J P, Li J W. 2011. Reappraisal of the ages of Neoproterozoic strata in South China: No connection with the Grenvillian orogeny[J]. Geology, 39: 299-302.
[111] Zhao G C. 2015. Jiangnan Orogen in South China: Developing from divergent double subduction[J]. Gondwana Research, 27(3): 1173-1180. doi: 10.1016/j.gr.2014.09.004
[112] Zheng J P, Griffin W L, O’Reilly S Y, Zhang M, Pearson N, Pan Y M. 2006. Widespread Archean basement beneath the Yangtze craton[J]. Geology, 34: 417-420.
[113] Zhou G Y, Wu Y B, Gao S, Yang J Z, Zheng J P, Qin Z W, Wang H, Yang S H. 2015. The 2.65 Ga A-type granite in the northeastern Yangtze craton: petrogenesis and geological implications[J]. Precambrian Research, 258: 247-259. doi: 10.1016/j.precamres.2015.01.003
[114] Zhou G Y, Wu Y B, Li L, Zheng J P, Wang H, Yang S H. 2018. Identification of ca. 2.65 Ga TTGs in the Yudongzi complex and its implications for the early evolution of the Yangtze Block[J]. Precambrian Research, 314: 240-263. doi: 10.1016/j.precamres.2018.06.011
[115] Zhou J C, Wang X L, Qiu J S. 2009. Geochronology of Neoproterozoic mafic rocks and sandstones from northeastern Guizhou, South China: Coval arc magmatism and sedimentation[J]. Precambrian Research, 170: 27-42. doi: 10.1016/j.precamres.2008.11.002
[116] Zhang Y Z, Wang Y J, Zhang Y H, Zhang A M. 2015. Neoproterozoic assembly of the Yangtze and Cathaysia blocks: Evidence from the Cangshuipu Group and associated rocks along the Central Jiangnan Orogen, South China[J]. Precambrian Research, 269: 18-30. doi: 10.1016/j.precamres.2015.08.003
-