湖南某锡矿区土壤稀土空间分布与生态风险评价

李剑锋, 柴启森, 王岚. 2025. 湖南某锡矿区土壤稀土空间分布与生态风险评价. 华南地质, 41(1): 148-157. doi: 10.3969/j.issn.2097-0013.2025.01.012
引用本文: 李剑锋, 柴启森, 王岚. 2025. 湖南某锡矿区土壤稀土空间分布与生态风险评价. 华南地质, 41(1): 148-157. doi: 10.3969/j.issn.2097-0013.2025.01.012
LI Jian-Feng, CHAI Qi-Sen, WANG Lan. 2025. Spatial Distribution and Ecological Risk Assessment of Soil Rare Earth in a Tin Ore Area of Hunan Province. South China Geology, 41(1): 148-157. doi: 10.3969/j.issn.2097-0013.2025.01.012
Citation: LI Jian-Feng, CHAI Qi-Sen, WANG Lan. 2025. Spatial Distribution and Ecological Risk Assessment of Soil Rare Earth in a Tin Ore Area of Hunan Province. South China Geology, 41(1): 148-157. doi: 10.3969/j.issn.2097-0013.2025.01.012

湖南某锡矿区土壤稀土空间分布与生态风险评价

  • 基金项目: 中国地质调查局花岗岩成岩成矿地质研究中心开放基金课题(PMGR202009、PMGR202108,PMGR202115)、中国地质调查局项目(DD20190154、DD20221689、DD20243431)
详细信息
    作者简介: 李剑锋(1985—),男,博士,主要从事花岗岩与成矿作用、环境地质学研究工作,E-mail:317649474@qq.com
  • 中图分类号: X53;P66

Spatial Distribution and Ecological Risk Assessment of Soil Rare Earth in a Tin Ore Area of Hunan Province

  • 为科学评价矿区土壤稀土空间分布与风险,本文采集某锡矿区表层土壤样品141件、柱状土壤样品3组30件,分析测定14种稀土元素含量;采用单项污染指数、地累积指数、内梅罗综合污染指数、潜在生态风险指数等方法对其进行系统研究。结果表明:(1) 全部样品14种稀土元素均值全部超出湖南省土壤背景值;其地累积指数(Igeo)从大到小依次为:Tm(0.468)>Pr(0.420)>Tb(0.403)>Nd(0.377)>Dy(0.320)>Sm(0.317)>Ho(0.267)>Yb(0.157)>Er(0.150)>Eu(0.117)>Lu(0.112)> Gd(0.051) >La(0.021)>Ce(−0.159),均属无污染范畴;内梅罗综合污染指数(PN)显示全部样品综合污染指数集中于0.29~8.96,平均2.48,以轻度污染为主;(2) 潜在生态风险因子($ {\mathrm{E}}_{\mathrm{r}}^{\mathrm{i}} $)占比表明,La、Ce、Yb,Pr、Nd、Sm、Eu、Gd、Dy、Er,Tb、Ho、Tm样本轻微生态风险占比分别为100%、>90%和>84.8%;潜在生态风险指数(RI)为25.43~1904,平均199.44;处于中度生态风险水平;(3) ΣREE、LREE、PN及RI的空间变化规律一致,证实区内表层土壤稀土富集主要受花岗岩风化作用和水文条件控制,而矿业开发对其影响有限。总之,区内土壤稀土污染和生态风险均很低,处于安全可控状态。

  • 加载中
  • 图 1  研究区位置(a)、地质图(b)与采样位置图(c)

    Figure 1. 

    图 2  研究区土壤ΣREE、LREE、HREE含量, PN及RI空间分布特征

    Figure 2. 

    图 3  研究区土壤稀土元素单项污染指数样本分级分布

    Figure 3. 

    图 4  研究区土壤稀土元素地累积指数污染占比

    Figure 4. 

    表 1  研究区土壤稀土含量(×10−6)与指标统计

    Table 1.  Soil rare earth content(×10−6) and index statistics in the study area

    元素LaCePrNdSmEuGdTbDyHoErTmYbLu
    含量最大值51939619277612826.595.915.488.71336.75.7235.35.21
    最小值6.865.991.76.631.270.221.290.191.250.230.710.10.580.087
    平均值73.99122.5016.6160.0310.751.7410.421.519.181.674.770.784.630.68
    标准偏差64.2277.1518.2967.2911.622.249.371.458.331.323.630.573.410.50
    变异系数0.870.631.101.121.081.290.900.960.910.790.760.730.740.73
    湖南省土壤背景值37.473.96.2623.84.370.825.360.63.970.772.420.322.360.36
    中国土壤背景值39.768.47.1724.45.221.034.60.634.130.872.50.372.440.36
    Pi最大值13.885.3630.6732.6129.2932.3217.8925.6722.3416.8815.1717.8814.9614.47
    最小值0.180.080.270.280.290.270.240.320.310.300.290.310.250.24
    平均值1.981.662.652.522.462.121.942.512.312.171.972.441.961.89
    标准偏差1.721.042.922.832.662.731.752.422.101.721.501.771.441.38
    变异系数0.870.631.101.121.081.290.900.960.910.790.760.730.740.73
    Igeo最大值3.211.844.354.444.294.433.584.103.903.493.343.573.323.27
    最小值−3.03−4.21−2.47−2.43−2.37−2.48−2.64−2.24−2.25−2.33−2.35−2.26−2.61−2.63
    平均值0.02−0.160.420.380.320.120.050.400.320.270.150.470.160.11
    标准偏差1.011.030.990.961.000.920.910.930.880.830.800.790.790.77
    变异系数47.39−6.452.362.543.147.9017.772.302.743.115.341.695.016.92
    $ {\mathrm{E}}_{\mathrm{r}}^{\mathrm{i}} $最大值13.885.36153.465.21146.5323.289.46256.7111.7168.875.83178.829.92289.4
    最小值0.180.081.360.561.452.681.203.171.572.991.473.130.494.83
    平均值1.981.6613.275.0412.3021.169.7225.1111.5621.709.8624.373.9237.80
    标准偏差1.721.0414.615.6513.3027.338.7424.2010.4917.197.5017.732.8927.51
    变异系数0.870.631.101.121.081.290.900.960.910.790.760.730.740.73
    下载: 导出CSV

    表 2  研究区土壤稀土地球化学参数

    Table 2.  Rare earth geochemical parameters of soil in the study area

    地化指标 ΣREE(×10−6 LREE(×10−6 HREE(×10−6 LREE/HREE LaN/YbN δEu δCe
    最大值 2062 1767 295.9 12.40 21.72 0.73 2.42
    最小值 29.33 24.89 4.44 4.51 6.34 0.16 0.10
    平均数 319.3 285.6 33.64 8.61 10.75 0.52 1.01
    标准偏差 237.7 211.3 28.44 1.88 3.16 0.14 0.40
    变异系数 0.74 0.74 0.85 0.22 0.29 0.26 0.40
    湖南省土壤背景值 181.10 144.55 38.04
    中国土壤背景值 184.72 145.92 38.80
    下载: 导出CSV
  • [1]

    程 胜,林龙勇,李俊春,韩存亮,李晓源,李朝晖,邓一荣.2024.离子吸附型稀土矿区生态环境问题与土壤修复技术研究进展[J]. 地球化学,53(1):17-29.

    [2]

    范宏瑞,牛贺才,李晓春,杨奎锋,杨占峰,王其伟.2020.中国内生稀土矿床类型、成矿规律与资源展望[J]. 科学通报,65:3778-3793.

    [3]

    高娟琴,于 扬,李以科,李瑞萍,柯昌辉,王登红,于 讽,张 塞,王雪磊.2021.内蒙白云鄂博稀土矿土壤一植物稀土元素及重金属分布特征田[J]. 岩矿测试,40(6):871-882. doi: 10.3969/j.issn.0254-5357.2021.6.ykcs202106007

    [4]

    高瑞忠,张阿龙,张 生,贾德彬,杜丹丹,秦子元,王喜喜.2019.西北内陆盐湖盆地土壤重金属Cr、Hg、As空间分布特征及潜在生态风险评价[J]. 生态学报,39(7):2532-2544.

    [5]

    何东明,王晓飞,陈丽君,苏 荣.2014.基于地积累指数法和潜在生态风险指数法评价广西某蔗田土壤重金属污染[J]. 农业资源与环境学报,31(2):126-131.

    [6]

    何宏平,杨武斌.2022.我国稀土资源现状和评价[J]. 大地构造与成矿学,46(5):829-841.

    [7]

    李剑锋,冯李霄.2023.湖南某锡矿区土壤重金属污染及健康风险评价[J]. 中国地质,50(3):897-910. doi: 10.12029/gc20220825003

    [8]

    李剑锋,卢友月,张遵遵,付建明,秦拯纬.2023a.南岭大义山岩体研究与找矿进展[J]. 地球科学,48(10):3707-3724.

    [9]

    李剑锋,冯李霄,陈希清,付建明,卢友月,马可蒙,谢昊霖.2023b.大义山东南部土壤重金属分布特征及其风险评价[J]. 环境工程技术学报,13(1):287-294.

    [10]

    刘永林,雒昆利,袁余洋.2020.重庆市江津区表层土壤中稀土元素含量与分布特征[J]. 中国稀土学报,38(2):215-224.

    [11]

    王园园,傅浩洋,朱建喜,何宏平,梁晓亮.2024.稀土元素的生物毒害性研究进展[J]. 地球化学,53(1):3-16.

    [12]

    赵莹晨. 2021. 白云鄂博矿区周边土壤稀土污染特征及稳定化修复研究[D]. 内蒙古科技大学硕士学位论文.

    [13]

    中国环境监测总站. 1990. 中国土壤元素背景值[M]. 北京:中国环境科学出版社.

    [14]

    Adeel M, Lee J Y, Zain M, Rizwan M, Nawab A, Ahmad M A, Shafiq M, Yi Hao, Jilani G, Javed R, Horton R, Rui Y K, Tsang D C W, Xing B S. 2019. Cryptic footprints of rare earth elements on natural resources and living organisms[J]. Environment International, 127: 785-800. doi: 10.1016/j.envint.2019.03.022

    [15]

    Balaram V. 2019. Rare earth elements: A review of applications, occurrence, exploration, analysis, recycling, and environmental impact[J]. Geoscience Frontiers, 10(4): 1285-1303. doi: 10.1016/j.gsf.2018.12.005

    [16]

    Chen H B, Chen Z B, Chen Z Q, Ou X L, Chen J J. 2020. Calculation of Toxicity Coefficient of Potential Ecological Risk Assessment of Rare Earth Elements[J]. Bulletin of Environmental Contamination and Toxicology, 104(5): 582-587. doi: 10.1007/s00128-020-02840-x

    [17]

    Forstner U, Ahlf W, Calmano W. 1993. Sediment quality objectives and criteria development in Germany[J]. Water Science and Technology, 28(8): 307-314.

    [18]

    García A, Espinosa R, Delgado L. 2011. Acute toxicity of cerium oxide, titanium oxide and iron oxide nanoparticles using standardized tests[J]. Desalination, 269(1-3): 136-141. doi: 10.1016/j.desal.2010.10.052

    [19]

    Gwenzi W, Mangori L, Danha C, Chaukura N, Dunjana N, Sanganyado E. 2018. Sources, behaviour, and environmental and human health risks of high-technology rare earth elements as emerging contaminants[J]. Science of the Total Environment, 636: 299-313. doi: 10.1016/j.scitotenv.2018.04.235

    [20]

    Hakanson L. 1980. An ecological risk index for aquatic pollution control. A sedimentological approach[J]. Water Research, 14(8): 975-1001. doi: 10.1016/0043-1354(80)90143-8

    [21]

    Hao Z, Li Y H, Li H R, Wei B G, Liao X Y, Liang T, Yu J P. 2015. Levels of rare earth elements, heavy metals and uranium in a population living in Baiyun Obo, Inner Mongolia, China: A pilot study[J]. Chemosphere, 128: 161-170. doi: 10.1016/j.chemosphere.2015.01.057

    [22]

    Khan A M, Bakar N K A, Bakar A F A, Ashraf M A. 2017. Chemical speciation and bioavailability of rare earth elements (REEs) in the ecosystem: A review[J]. Environmental Science and Pollution Research, 24(29): 22764-22789. doi: 10.1007/s11356-016-7427-1

    [23]

    Li J X, Hong M, Yin X Q, Liu J L. 2010. Effects of the accumulation of the rare earth elements on soil macrofauna community[J]. Journal of Rare Earths, 28(6): 957-964. doi: 10.1016/S1002-0721(09)60233-7

    [24]

    Li X, Yang H, Zhang C, Zeng G M, Liu Y G, Xu W H, Wu Y, Lan S M. 2017. Spatial distribution and transport characteristics of heavy metals around an antimony mine area in central China[J]. Chemosphere, 170: 17-24. doi: 10.1016/j.chemosphere.2016.12.011

    [25]

    Lu X X, Gu Y G, Wang Z H, Liang R Z, Han Y J, Li H S. 2022. Risk on assessment of 15 REEs and mixtures by DGT in Songhua River system sediments of China’s largest old industrial base[J]. Environmental Research, 212: 113368. doi: 10.1016/j.envres.2022.113368

    [26]

    Ma Y H, Kuang L L, He X, Bai W, Ding Y Y, Zhang Z Y, Zhao Y L, Chai Z F. 2010. Effects of rare earth oxide nanoparticles on root elongation of plants[J]. Chemosphere, 78(3): 273-279. doi: 10.1016/j.chemosphere.2009.10.050

    [27]

    Meite F, Alvarez-Zaldívar P, Crochet A, Wiegert C, Payraudeau S, Imfeld G. 2018. Impact of rainfall patterns and frequency on the export of pesticides and heavy-metals from agricultural soils[J]. Science of the Total Environment, 616: 500-509.

    [28]

    Pagano G, Guida M, Tommasi F, Oral R. 2015. Health effects and toxicity mechanisms of rare earth elements-Knowledge gaps and research prospects[J]. Ecotoxicology & Environmental Safety, 115: 40-48.

    [29]

    Wang L, Li J F, Liu X W, Feng L X. 2024. Heavy metal pollution in water and soil and associated health risks in a tin mining region of Hunan Province[J]. China Geology, 7: 1-11.

    [30]

    Wang L Q, Liang T. 2014. Accumulation and fractionation of rare earth elements in atmospheric; partic;ulates around a mine tailing in Baotou, China[J]. Atmospheric Environment, 23(6): 747-751.

    [31]

    Wei B G, Li Y H, Li H R, Yu J P, Ye B X, Liang T. 2013. Rare earth elements in human hair from a mining area of China[J]. Ecotoxicology and Environmental Safety, 96: 118-123. doi: 10.1016/j.ecoenv.2013.05.031

    [32]

    Wu J, Lu J, Zhang C, Zhang Z H, Min X Y. 2019. Distribution, pollution, and ecological risks of rare earth elements in soil of the northeastern Qinghai–Tibet Plateau[J]. Human and Ecological Risk Assessment, 25(7): 1816-1831. doi: 10.1080/10807039.2018.1475215

    [33]

    Xia P H, Ma L, Sun R G, Yang Y, Tang X C, Yan D B, Lin T, Zhang Y T, Yi Y. 2020. Evaluation of potential ecological risk, possible sources and controlling factors of heavy metals in surface sediment of Caohai Wetland, China[J]. Science of The Total Environment, 740: 140231. doi: 10.1016/j.scitotenv.2020.140231

    [34]

    Zhang Z Z, Lu Y Y, Li J F, Quan H Y, Dai L Q, Fu J M, Yu Y S, Lin D Y, Dai P Y. 2024. Tin-polymetallic mineralization and granitic rocks in the Nanling daping mining area: Geochemical and geochronological constraints[J]. Ore Geology Reviews, 170: 106144. doi: 10.1016/j.oregeorev.2024.106144

  • 加载中

(4)

(2)

计量
  • 文章访问数:  38
  • PDF下载数:  8
  • 施引文献:  0
出版历程
收稿日期:  2024-11-15
修回日期:  2024-12-20
刊出日期:  2025-03-20

目录