Study on Soil Moisture Transport Characteristics of Thick Layered Cohesive Soil in Jianghan Plain under Persistent Drought Conditions
-
摘要:
受持续高温及干旱少雨的影响,长江流域2022年遭遇自有完整气象观测记录以来最严重的气象干旱。本次研究基于江汉平原野外试验场的气象监测数据,选取该年相较往年降雨及气温具有显著差异的8~12月作为研究时段,利用不同深度土壤含水率及基质势监测数据分析干旱条件下黏性土层水分对降雨、蒸发和地下水位变化的响应规律。结果显示:浅层土壤(0~1.4 m)的含水率和水分运移受土壤蒸发和降水入渗共同影响,干旱期间水分运动以向大气蒸发为主且长历时稳定的降雨才形成有效入渗,蒸发影响深度约为1.4 m;中层土壤(1.4~3.5 m)含水率较高且比较稳定,基本不受蒸发和监测期间降雨的影响,土壤水分以“活塞流”方式向下运移,且土壤水分下渗过程中受土层非均质的影响导致在低渗层附近出现零通量面;深层土壤(3.5~6.0 m)的含水率和水分运移与地下水位的关系密切,且随着土壤深度减小,相关性变弱且滞后时间变长。与中层土壤相比,深层土壤由于受低渗层阻渗和地下水位下降的双重影响,土壤含水率和水势梯度的变化更为剧烈。
Abstract:Affected by continuous high temperature and low rainfall, the Yangtze River basin had experienced the most severe meteorological drought in 2022 since the establishment of complete meteorological observation records. Based on meteorological monitoring data from field test sites, this study selected August-December of 2022 as the research period with significant differences in rainfall and temperature compared with previous years. The response of cohesive soil moisture to rainfall, evaporation and groundwater level under drought conditions was analyzed by using soil moisture content and matrix potential monitoring data at different depths. The results showed that the moisture content and water transport of shallow soil (0~1.4 m) were affected by both soil evaporation and precipitation infiltration. During drought, the water movement was dominated by evaporation, with the depth about 1.4m and the effective infiltration was only formed by long-term stable rainfall . The water content of the middle-layer soil (1.4~3.5 m) was relatively high and stable, which was basically not affected by evaporation and rainfall during the monitoring period. Soil water migrated downward in the way of "piston flow", and the zero flux surface near the low permeability layer was affected by the heterogeneity of the soil layer during the infiltration process. Water content and water transport in deep soil (3.5~6.0 m) were closely related to groundwater level, and the correlation became weaker and the lag time became longer as the soil depth decreased. Compared with the middle soil, the changes of soil moisture content and water potential gradient in deep soil were more intense due to the dual effects of low permeability layer prevention and the decrease of groundwater level.
-
Key words:
- thick cohesive soil /
- drought period /
- moisture transport /
- soil water potential /
- moisture content /
- Jianghan Plain
-
-
表 1 2021年、2022年试验场气象数据对比表
Table 1. Comparison of meteorological data at test site in 2021 and 2022
监测内容 1月 2月 3月 4月 5月 6月 7月 8月 9月 10月 11月 12月 21年月平均雨量(mm) 11.9 41.7 108.8 74.5 138.2 114.2 267.2 339.1 42.9 51.2 12.3 10.4 22年月平均降雨量(mm) 12.7 18.8 6.4 129.0 25.5 69.3 175.4 12.3 0.1 38.1 46.4 2.8 21年月平均气温(℃) 4.6 11.0 12.1 16.4 21.7 26.8 29.7 27.5 26.5 17.6 13.0 7.3 21年月最高气温(℃) 25.9 35.9 33.8 38.6 43.4 44.3 25.9 35.9 33.8 38.6 43.4 44.3 22年月平均气温(℃) 6.0 5.2 17.0 18.9 22.5 28.1 30.0 30.8 25.9 18.0 14.4 4.9 22年月最高气温(℃) 24.6 26.8 36.4 41.2 43.4 47.0 48.8 51.2 48.0 47.4 39.4 22.3 表 2 2022年8—12月试验场各层土壤含水率均值及变异系数
Table 2. Average soil volume water content and coefficient of variation of each layer in the test site from August to December, 2022
土层深度
(m)8月 9月 10月 11月 12月 含水率
均值(%)含水率
变异系数(%)含水率
均值(%)含水率
变异系数(%)含水率
均值(%)含水率
变异系数(%)含水率
均值(%)含水率
变异系数(%)含水率
均值(%)含水率
变异系数(%)0.2 35.6 13.93 30.33 2.71 35.26 11.41 38.34 9.66 41.76 2.6 0.5 33.91 10.25 30.3 1.02 28.98 1.41 30.13 9.33 34.86 2.12 0.9 39.61 1.71 36.76 5.33 33.48 7.52 32.27 8.09 34.23 1.81 1.4 38.72 1.01 37.49 0.52 36.38 0.79 35.73 0.88 34.52 1.28 2.0 42.7 1.54 41.04 0.28 40.22 0.7 39.2 0.85 38.49 0.99 2.5 38.36 0.4 37.41 0.39 36.9 0.59 36.29 0.53 35.32 0.76 3.0 37.28 0.41 35.72 1.14 34.54 0.62 33.98 0.43 33.24 0.57 3.5 44.73 0.19 44.73 0.37 43.36 0.91 42.51 0.5 41.42 0.66 4.0 44.12 0.55 44.56 0.14 40.76 3.77 38.5 1.18 36.35 1.34 4.5 41.6 0.35 41.67 0.14 40.41 1.56 38.61 0.9 36.86 1.07 5.0 42.15 0.44 41.17 1.93 38.64 0.77 38.05 0.53 36.99 0.59 6.0 38.66 2.28 37.04 0.23 36.48 0.37 36.18 0.3 35.72 0.27 表 3 2022年试验场土壤垂向剖面月平均土壤水势表
Table 3. Monthly mean total soil water potential of vertical soil profile in the experimental site in 2022
土层深度
(m)8月 9月 10月 11月 12月 水势
均值水势
变异系数水势
均值水势
变异系数水势
均值水势
变异系数水势
均值水势
变异系数水势
均值水势
变异系数0.2 −274.27 54.97 −511.73 11.46 −207.67 110.68 −72.26 72.35 −38.23 56.3 0.5 −153.99 55.72 −274.8 5.87 −184.99 39.98 −117.55 60.88 −44.53 34.71 0.9 −19.34 43.79 −39.1 20.95 −44.01 46.59 −56.59 44.18 −17.28 33.06 1.4 −18.09 11.49 −29.01 12.65 −33.59 10.79 −39.58 8.65 −30.78 9.99 2.0 −22.84 0.91 −29.81 14.52 −46.2 4.76 −55.3 3.6 −50.55 5.45 2.5 −27.15 0.2 −27.7 1.78 −31.69 4.45 −39.9 7.28 −49.05 3.14 3.0 −36.15 3.06 −34.47 1.64 −53.07 13.9 −70.44 5 −88.82 6.35 3.5 −36.98 0.32 −36.87 0.35 −39.42 7.27 −61.49 9.05 −82.43 6.67 4.0 −40.24 0.06 −40.34 0.19 −40.47 0.14 −40.65 0.16 −40.96 0.12 4.5 −48.07 0.22 −47.83 0.07 −48.48 1.57 −67.56 14.39 −94.44 6.05 5.0 −53.86 0.06 −53.87 0.03 −54 0.19 −54.31 0.17 −56.01 1.64 6.0 −62.14 0.19 −62.49 0.21 −71.45 6.7 −81.85 2.08 −87.6 1.55 表 4 2022年试验场土壤垂向剖面总水势梯度值及土壤水运动方向信息
Table 4. Gradient value of total water potential and the movement direction of soil water of the test site in vertical profile in 2022
-
[1] 柏道远,李长安.2010.江汉盆地第四纪地质研究现状[J]. 地质科技情报,29(6):1-6.
[2] 常 威,黄 琨,胡 成,王 清,王宁涛.2019.云应盆地东北部含水层结构特征及地下水转化模式[J]. 水文地质工程地质,46(5):9-15+23.
[3] 范 琦,王 骥,蔺文静,陈 浩.2006.包气带增厚条件下地下水补给规律研究[J]. 水文地质工程地质,(3):21-24. doi: 10.3969/j.issn.1000-3665.2006.03.005
[4] 胡美艳,王 清,陈植华,胡 成.2018.云应盆地北部浅层地下水氢氧同位素特征分析[J]. 安全与环境工程,25(5):9-14.
[5] 解文艳,樊贵盛.2004.土壤质地对土壤入渗能力的影响[J]. 太原理工大学学报,(5):537-540. doi: 10.3969/j.issn.1007-9432.2004.05.010
[6] 廖一铭,严宝文.2023.典型黄土灌区土壤水分零通量面变化特征研究[J]. 水资源研究,12(4):368-377.
[7] 林 丹,靳孟贵,马 斌,汪丙国.2014.包气带增厚区土壤水力参数及其对入渗补给的影响[J]. 地球科学——中国地质大学学报,39(6):760-768.
[8] 刘广宁,吴 亚,王世昌,廖 金,余绍文,伏永朋,杜 尧,陈柳竹.2022.长江中游典型河湖湿地主要水环境问题及生态环境地质风险评价区划[J]. 华南地质,38(2):226-239.
[9] 刘添文,潘 越,胡 成,王 清,陈植华,史婷婷.2021.应用D、18O同位素示踪孝感市厚层黏性土中土壤水入渗补给及其生态环境效应[J]. 中国地质,48(5):1429-1440.
[10] 刘添文. 2021. 江汉平原北缘厚层粘性土地下水补给与渗流机制解析[D]. 中国地质大学(武汉)博士学位论文.
[11] 刘晓芮,王 清,陈植华,胡 成.2019.基于稳健回归-去趋势波动分析法的山前平原地下水转换关系研究[J]. 安全与环境工程,26(5):17-24.
[12] 石浩楠,陈植华,胡 成,黄 琨,刘添文,王 清.2019.江汉平原北部黏土层土壤水分特征曲线的测定与模拟[J]. 安全与环境工程,26(5):25-32.
[13] 王加虎,李 丽,李新红.2008.“四水”转化研究综述[J]. 水文,(4):5-8.
[14] 王晓艺,苏正安,马 菁,杨鸿琨,何周窈,周 涛.2020.河北坝上与坝下不同土地利用类型土壤入渗特征及其影响因素[J]. 自然资源学报,35(6):1360-1368.
[15] 杨建锋,李宝庆,刘士平,李运生.2000.地下水对农田腾发过程作用研究进展[J]. 农业工程学报,16(4):45-49.
[16] 杨柳悦,严宝文.2013.黄土中渗流水的运动特征研究[J]. 水土保持研究,20(6):6-9.
[17] 张德厚.1994.江汉盆地新构造与第四纪环境变迁[J]. 地壳形变与地震,(1):74-80.
[18] 张光辉,费宇红,聂振龙,严明疆,等. 2014. 区域地下水演化与评价理论方法[M]. 北京:科学出版社.
[19] 张光辉,费宇红,申建梅,杨丽芝.2007.降水补给地下水过程中包气带变化对入渗的影响[J]. 水利学报,(5):611-617.
[20] 张国祥,申丽霞,郭云梅.2016.微润灌溉条件下土壤质地对水分入渗的影响[J]. 灌溉排水学报,35(7):35-39.
[21] 张敬晓,汪 星,汪有科,靳姗姗,董建国,汪治同.2017.黄土丘陵区林地干化土壤降雨入渗及水分迁移规律[J]. 水土保持学报,31(3):231-238.
[22] 中华人民共和国水利部. 2023. 中国河流泥沙公报[M]. 北京:中国水利水电出版社.
[23] Huo S Y, Jin M G, Liang X, Lin D. 2014. Changes of vertical groundwater recharge with increase in thickness of vadose zone simulated by one-dimensional variably saturated flow model[J]. Journal of Earth Science, 25(6): 1043-1050. doi: 10.1007/s12583-014-0486-7
[24] Liu T W, Hu C, Wang Q, Li J, Huang K, Chen Z H, Shi T T. 2020. Conversion relationship of rainfall-soil moisture-groundwater in Quaternary thick cohesive soil in Jianghan Plain, Hubei Province, China[J]. China Geology, 3(3): 462-472.
-