Development Characteristics of Isolated Rocks on the Islands in the Pearl River Estuary and the Resilient Design of Prevention and Control: A Case Study of Wanshan District, Zhuhai City
-
摘要:
珠江口海岛上孤石遍布,在强降雨或台风时期,严重威胁海岛地区人民生命财产安全。本文通过实地调查、遥感和GIS技术,查清了珠海市万山区海岛孤石的发育特征、形成机理和失稳模式,并针对性地进行了防治设计。研究表明:海岛孤石的发育与坡度、高程、坡向有关,并以外伶仃岛为例,查明了迎风坡孤石分布密集、裸露明显、埋深浅,以孤石群为主,背风坡孤石分布稀疏、隐蔽性好、埋深较深、零星分布的特点。总结了孤石的形成主要受地形地貌、风化作用、构造运动和外力侵蚀因素影响。基于研究结果,设计了针对万山区海岛孤石灾害的“空间管控-生态固石-分级响应”三位一体韧性防治体系,为政府建设海洋强国、持续实施海岛旅游开发建设和建立健全地质灾害防灾减灾监测预警体系提供借鉴。
Abstract:The islands at the mouth of the Pearl River are loaded with isolated rocks, which pose a serious threat to people's lives and property in the island areas when heavy rainfall or typhoons are raging. This article, through field surveys, remote sensing, and GIS technology, clarifies the development characteristics, formation mechanisms, and instability patterns of isolated rocks on the islands in the Wanshan District, Zhuhai City, and carries out targeted prevention and control design. The research shows that the development of isolated rocks on the islands is related to slope, elevation, and slope orientation. Taking the outer Lingding Island as an example, it reveals that the windward slope has dense distribution of isolated rocks with obvious exposure and shallow burial depth, and is dominated by isolated rock clusters. The isolated rocks on leeward slope are sparse and sporadic distributed with good concealment and deeper burial depth. The formation of isolated rocks is mainly influenced by topography, weathering, tectonic movement, and external erosion . Based on the research results, a three-in-one resilience prevention and control system for isolated rock disasters on the islands in the Wanshan District, namely "spatial management-ecological rock stabilization-graded response," has been designed. This provides a reference for the government to build a strong maritime power, continuously implement island tourism development and construction, and establish a sound geological disaster prevention and mitigation monitoring and early warning system.
-
Key words:
- isolated rocks /
- island /
- geological disasters /
- resilient design /
- Zhuhai
-
-
表 1 万山区主要海岛孤石(群)分布情况表
Table 1. Table of the distribution of isolated rocks (groups) on the main islands in the Wanshan District
岛屿 大万山岛 东澳岛 桂山岛 外伶仃岛 担杆岛 合计 孤石(群)数(个) 90 104 90 80 60 424 总方量(m3) 17319.11 56352.15 23174.7 22974.97 2382.4 122203.33 表 2 万山区主要海岛孤石(群)所处斜坡坡度分布情况表
Table 2. Table of the slope gradient distribution of the isolated rocks (groups) on the main islands in the Wanshan District
坡度(°) 岛屿孤石(群) 数(个) 大万山岛 东澳岛 桂山岛 外伶仃岛 担杆岛 合计 0 ~ 10 8 14 5 3 1 31 10 ~ 30 40 32 39 16 11 138 30 ~ 60 29 40 39 52 47 207 60 ~ 90 13 18 7 9 1 48 合计 90 104 90 80 60 424 表 3 万山区主要海岛孤石(群)所处斜坡高程情况表
Table 3. Table of elevation situations of the slopes where the isolated rocks (groups) of the main islands in the Wanshan District
高程(m) 岛屿孤石(群)数(个) 大万山岛 东澳岛 桂山岛 外伶仃岛 担杆岛 合计 20以下 3 14 4 10 0 31 20 ~ 30 2 14 3 8 4 31 30 ~ 40 4 20 11 9 7 51 40 ~ 50 5 16 6 7 6 40 50 ~ 60 7 21 16 10 10 64 60 ~ 70 9 7 12 9 7 44 70 ~ 80 7 9 10 7 11 44 80 ~ 90 12 3 8 4 11 38 90 ~ 100 12 0 5 12 4 33 100 ~ 120 22 0 11 4 0 37 120以上 7 0 4 0 0 11 合计 90 104 90 80 60 424 表 4 外伶仃岛2011年—2023年风向统计表
Table 4. Statistics Table of Wind Directions on Wailingding Island from 2011 to 2023
风向 N NE E SE S SW W NW 数据量(个) 2829 7339 9636 3872 2251 5539 1358 405 百分比(%) 8.51 22.09 29.00 11.65 6.77 16.67 4.09 1.22 表 5 外伶仃岛背风坡区域孤石统计表
Table 5. Statistics table of isolated rocks in the leeward slope srea of Wailingding Island
孤石(群)
编号方量
(m3)坡度
(°)高程
(m)基底
岩性埋深
(m)孤石(群)
编号方量
(m3)坡度
(°)高程
(m)基底
岩性埋深
(m)GS01 7.2 42.5 85 花岗岩 0 GS41 9.61 9 26.5 残坡积土 1.25 GS02 424.65 45 21 残坡积土 1.25 GS42 9.61 47.5 20 花岗岩 0.25 GS03 68.15 8 29.1 残坡积土 1.25 GS43 58.67 6.5 25.2 残坡积土 1.25 GS04 440.56 20 34 残坡积土/花岗岩 1.75 GS44 207.1 5 37 残坡积土/花岗岩 0.25 GS05 2589.13 37.5 36 残坡积土 1.25 GS45 68.21 15 51 残坡积土 1.5 GS06 39.7 32.5 46 残坡积土 1.25 GS46 80.65 10 39.5 残坡积土 1.5 GS07 627.61 32.5 57 残坡积土 1.25 GS47 113.4 12.5 31.5 残坡积土 1 GS08 865.55 32.5 62 残坡积土/花岗岩 1.25 GS48 189.5 37.5 42 残坡积土 1.25 GS09 905.35 56 54 残坡积土/花岗岩 1.25 GS49 105.07 32.5 32.5 残坡积土 1.25 GS10 45.22 40 41 残坡积土/花岗岩 0.55 GS50 153.79 32.5 44.5 残坡积土 1.25 GS11 417.28 19 52.5 残坡积土 1.5 GS51 264.85 35 56.2 残坡积土 1.15 GS12 59.36 17.5 45 残坡积土 1.75 GS52 400 37.5 67.5 残坡积土 1 GS13 113.44 37.5 57.2 残坡积土 1.25 GS53 29.7 77.5 60 残坡积土/花岗岩 0.5 GS14 51.86 5.5 58.5 残坡积土 1.25 GS54 264.85 38.5 26 残坡积土/花岗岩 0.5 GS15 178.98 11.5 66 残坡积土 1.75 GS55 10.5 17.5 75.5 残坡积土 1.25 GS16 3885 25 70 残坡积土 1.25 GS56 129.46 43 92 残坡积土/花岗岩 0.3 GS17 1106.13 35 96 残坡积土/花岗岩 1.5 GS57 178.76 40 93 残坡积土 1 GS18 188.1 37.5 94 残坡积土 1 GS58 66 45 101 残坡积土 1.25 GS19 24.57 37.5 94 残坡积土/花岗岩 0.75 GS59 9.26 70 101 残坡积土 1.75 GS20 122.2 38 93 残坡积土/花岗岩 1.5 GS60 80.59 42.5 100 残坡积土 1.25 GS21 37.8 37.5 78 残坡积土 1.75 GS61 22.78 40 96 残坡积土 1.25 GS22 292.5 7.5 78 残坡积土 1.75 GS62 64.27 37.5 99 残坡积土/花岗岩 0.5 GS23 31.2 35 20 残坡积土 1.25 GS63 12.94 35 98 残坡积土 1.25 GS24 59.05 10 22.5 残坡积土 1.25 GS64 123.61 25 97.5 残坡积土 1.5 GS25 54.14 43 32.5 残坡积土/花岗岩 0.8 GS65 290.29 50 106 花岗岩 0.25 GS26 26.39 31 28 残坡积土 1.25 GS66 45.03 45 99 花岗岩 0 GS27 174.4 35 17.5 残坡积土 1.25 GS67 2100 55 103 花岗岩 0 GS28 49.3 47.5 18 残坡积土 1.75 GS68 44.5 42.5 78.5 花岗岩 0.25 GS29 180.4 42.5 26 残坡积土/花岗岩 0.775 GS69 61.92 50 76 残坡积土/花岗岩 0.1 GS30 2424.12 42.5 41.6 花岗岩 0.8 GS70 63.95 50 89.65 花岗岩 0 GS31 208.17 38.5 48 残坡积土 1.25 GS71 60.90 50 89.65 花岗岩 0.05 GS32 67.33 10 55.5 残坡积土 1.25 GS72 297.2 65 70 花岗岩 0.25 GS33 183.81 7.5 66 残坡积土 1.25 GS73 90.21 50 64 残坡积土/花岗岩 0.1 GS34 150 58 72 残坡积土 1.25 GS74 24.39 47.5 74.5 残坡积土 0.75 GS35 327.56 40 82 残坡积土 1.25 GS75 295.67 52.5 64.5 残坡积土 0.65 GS36 7.04 47.5 34 残坡积土 1.3 GS76 87.42 37.5 62.5 残坡积土/花岗岩 0.15 GS37 134.38 17.5 37.1 残坡积土 1.25 GS77 91.6 50 59 残坡积土/花岗岩 0.15 GS38 97.21 65 14.02 残坡积土 1.25 GS78 5.63 15 14 花岗岩 0.05 GS39 23.18 35 15.5 残坡积土 1.25 GS79 15.12 52.5 9 残坡积土 0.75 GS40 43.5 40.5 26 花岗岩 0.25 GS80 17.36 40 10 残坡积土 2 -
[1] 曹 权,项 伟,王凤华,郭 龙,李清明.2013.深圳地区花岗岩球状风化体地下分布规律统计分析[J]. 水文地质工程地质,40(5):87-90+96.
[2] 陈元芳,蔡岸锋.2021.珠海市万山区山体自然边坡孤石稳定性调查[J]. 西部资源,(5):15-17.
[3] 冯龙飞,张堪培.2024.某自然边坡孤石群特征分析及防治工程实践[J]. 资源信息与工程,39(6):34-38. doi: 10.3969/j.issn.2095-5391.2024.06.008
[4] 江贵荣,周燕红,鲁 威,耿协威.2019.珠海市孤石调查与防治对策[J]. 资源信息与工程,34(2):174-176+178. doi: 10.3969/j.issn.2095-5391.2019.02.076
[5] 江金进,刘 佳,江 山,赵风顺,江 宁,赖 波.2022.珠海凤凰山东南角花岗岩孤石空间分布特征及其对步道工程的影响[J]. 资源环境与工程,36(1):70-75.
[6] 江 山,廖海斌.2021.花岗岩孤石的空间分布特征及对隧道工程的影响[J]. 冶金管理,(19):135-136.
[7] 赖 波,刘 佳,吴舒天.2021a.基于ArcGIS的地质灾害巡查单元划分——以珠海市为例[J]. 华南地质,37(1):75-82.
[8] 赖 波,刘 佳,江金进.2021b.基于GIS的珠海市地质灾害易发性评价[J]. 地质灾害与环境保护,32(1):31-36.
[9] 赖 波,赵风顺,江金进,江 山,江 宁,李俊生.2023.基于AHP-信息量法的珠海市地质灾害风险评价[J]. 华南地质,39(1):147-156.
[10] 施有志,赵花丽,黄钰琳,林树枝.2019.厦门地区孤石分布规律及对地铁工程的影响[J]. 地质与勘探,55(3):862-869. doi: 10.12134/j.dzykt.2019.03.018
[11] 唐 玲,杨木壮,王银霞,高 杨,田 松,董 迪.2020.粤港澳大湾区海岛空间分布特征探析[J]. 海洋学研究,38(2):74-80. doi: 10.3969/j.issn.1001-909X.2020.02.008
[12] 魏辉球,詹振阳.2021.山体不稳定孤石的预防和治理措施[J]. 西部资源,(2):95-97.
[13] 吴海斌.2024.珠海某高陡斜坡孤石稳定性分析评价[J]. 资源信息与工程,39(4):50-53. doi: 10.3969/j.issn.2095-5391.2024.04.012
[14] 杨 光.2021.珠海市海岛孤石特征及防治措施[J]. 西部资源,(3):151-153.
[15] 张 赫,张 炜,陈思嘉,杨丹妮,田 征.2024.近岸旅游型海岛韧性评价体系构建及空间要素影响机制研究[J]. 海洋通报,43(5):676-687.
[16] 张梅梅,温兴平.2022.珠海市板樟山孤石群地质灾害防治施工技术[J]. 建筑机械化,43(4):45-48. doi: 10.3969/j.issn.1001-1366.2022.04.012
[17] 庄明水.2021.厦门岛内孤(滚)石破坏模式及分布规律研究[J]. 地质灾害与环境保护,32(4):34-38+44. doi: 10.3969/j.issn.1006-4362.2021.04.006
[18] Luo X, Chen R X, Ji Y F, Li P L, Ma Z Q, Jiang X M. 2025. Mechanical Properties of Reinforcement Cage Underreamed Anchor Bolts and Their Application in Soft Rock Slope Stabilization[J]. Buildings, 15(3): 319. doi: 10.3390/buildings15030319
[19] Wu C W, Han X, Li W S, Da Q, Luo J H. 2024. Slope Failure Treatment by Anchor Rod Method at Exit of Tunnel: Case Study in Nanxia Expressway[J]. Soil Mechanics and Foundation Engineering, 61: 388-395. doi: 10.1007/s11204-024-09988-2
[20] Xiao Y L, Li S T. 2022. Study on Treatment Technology of Rock Slope Landslide of an Expressway in Guizhou[J]. Journal of Physics: Conference Series, 2185: 012074. doi: 10.1088/1742-6596/2185/1/012074
[21] Zhou J X, Li F, Wang J A, Gao A Q, He C Y. 2022. Stability Control of Slopes in Open-Pit Mines and Resilience Methods for Disaster Prevention in Urban Areas: A Case Study of Fushun West Open Pit Mine[J]. Frontiers in Earth Science, 10: 879387. doi: 10.3389/feart.2022.879387
-