Mineralogy of Tourmaline in the Motianling Pluton, North Guangxi: Insights into Magmatic-hydrothermal Evolution
-
摘要:
摩天岭岩体是华南地区与铀矿相关的最古老花岗岩之一,其岩浆期后流体特征及性质研究尚不充分,限制了对其成矿机制的深入理解。电气石可为研究岩浆-热液作用提供重要线索,本研究通过电子探针分析、激光原位分析等方法,结合主成分分析,对摩天岭岩体中的电气石开展系统研究。结果显示,摩天岭岩体中的电气石分为三种类型:岩浆晚期的浸染状电气石(Tur-1)、岩浆热液转换阶段的石英-电气石囊型(Tur-2)和热液阶段的电气石-石英脉型(Tur-3),且具有明显的主量元素聚类特征,绝大多数为黑电气石。研究表明,从Tur-1到Tur-3,电气石的形成环境由岩浆向热液转变,Tur-2可能记录了这一演化过程,V、Co等元素含量的进一步增加也暗示岩浆经历了持续的分异演化,不同类型的电气石反映了岩浆体系流体活动的增强及阶段的转变。同时,摩天岭地区的岩浆-热液流体活动对区内铀矿(如新村、达亮铀矿床)和锡矿(九峰锡矿床)的形成具有重要意义,挥发组分的存在不仅增强了岩浆对铀的富集能力,还进一步提升了摩天岭主体花岗岩中铀的含量,为岩体内晶质铀矿的形成提供了丰富的物质基础。当摩天岭花岗质岩浆演化至晚期时,会分泌出富含F和B的流体,这为锡成矿提供了热源和富Sn-F-B的流体,从而为矿床的形成提供充足的成矿物源。
Abstract:The Motianling pluton is one of the oldest uranium-related granites in southern China. However, the characteristics and properties of its post-magmatic fluid have not yet been sufficiently studied, which limits the in-depth understanding of its mineralization mechanism. Tourmaline can provide important clues for investigating magma-hydrothermal processes. In this study, systematic research was conducted on tourmaline from the Motianling rock mass using electron probe microanalysis, in-situ laser ablation analysis, and principal component analysis. The results show that the tourmaline in the Motianling rock mass can be classified into three types: disseminated tourmaline (Tur-1) formed during the late magmatic stage, quartz-tourmaline aggregates (Tur-2) formed during the magmatic-hydrothermal transition stage, and tourmaline-quartz veins (Tur-3) formed during the hydrothermal stage. These tourmalines exhibit distinct clustering features in major elements, with the vast majority being schorl. The study indicates that from Tur-1 to Tur-3, the formation environment of tourmaline transitions from magmatic to hydrothermal, with Tur-2 potentially recording this evolution process. The further increase in elements such as V and Co also suggests continuous fractional crystallization of the magma. The different types of tourmaline reflect the intensification of fluid activity and stage transition within the magmatic system. Meanwhile, the magmatic-hydrothermal fluid activity in the Motianling area plays a significant role in forming local uranium deposits (e.g., Xincun and Daliang uranium deposits) and tin deposits (e.g., Jiufeng tin deposit). The presence of volatile components not only enhances the magma's ability to enrich uranium but also further increases the uranium content in the main granitic body of Motianling, providing a substantial material basis for the formation of uraninite with the rock mass. When the Motianling granitic magma evolved to its late stage, it exsolved fluids rich in F and B, which provide both the heat source and Sn-F-B-enriched fluids essential for tin mineralization, thus offering sufficient ore-forming materials for the formation of the deposit.
-
-
表 1 摩天岭黑云母花岗岩中电气石电子探针分析数据及离子计算结果(wt. %)
Table 1. Microprobe data and ion calculation(wt. %) of tourmaline from the Motianling biotite granite
类型 Tur-1(n=12) Tur-2(n=12) Tur-3(n=12) 最大值 最小值 平均值 最大值 最小值 平均值 最大值 最小值 平均值 SiO2 35.50 34.44 35.12 35.06 34.40 34.76 36.42 35.86 36.10 TiO2 0.42 0.11 0.18 1.00 0.28 0.67 0.50 0.18 0.38 Al2O3 33.91 32.41 33.46 31.38 29.86 30.48 33.71 32.14 32.79 Cr2O3 0.04 0.00 0.01 0.05 0.00 0.01 0.04 0.00 0.01 FeOT 14.31 13.57 13.96 14.57 13.51 14.11 13.20 12.31 12.79 MgO 2.09 1.19 1.40 1.63 1.29 1.46 3.12 1.95 2.53 CaO 0.44 0.03 0.10 0.10 0.05 0.08 0.42 0.04 0.14 MnO 0.20 0.11 0.17 0.18 0.10 0.14 0.13 0.07 0.09 Na2O 1.81 1.46 1.63 1.95 1.64 1.81 1.86 1.59 1.72 K2O 0.04 0.02 0.03 0.04 0.02 0.03 0.04 0.01 0.02 F 0.09 0.00 0.01 0.05 0.00 0.01 0.09 0.00 0.01 Cl 0.01 0.00 0.00 0.02 0.00 0.01 0.01 0.00 0.01 H2O* 3.61 3.51 3.58 3.50 3.44 3.47 3.66 3.58 3.63 B2O3* 10.47 10.30 10.39 10.13 10.00 10.07 10.60 10.48 10.53 O=F 0.04 0.00 0.00 0.02 0.00 0.00 0.04 0.00 0.00 Total* 100.74 99.73 100.22 98.09 96.61 97.27 101.56 100.42 100.92 根据31个阴离子(O,OH,F)计算 T-Site Si 5.90 5.81 5.87 6.03 5.96 6.00 5.98 5.92 5.96 Al 0.19 0.10 0.13 0.04 0.00 0.01 0.08 0.02 0.04 B 3 3 3 3.00 3.00 3.00 3.00 3.00 3.00 Y-Site Al 0.56 0.26 0.47 0.37 0.08 0.20 0.47 0.24 0.34 Ti 0.05 0.01 0.02 0.13 0.04 0.09 0.06 0.02 0.05 Cr 0.01 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 Fe3+ 0.24 0.22 0.23 0.25 0.23 0.24 0.22 0.20 0.21 Mg 0.53 0.30 0.35 0.42 0.33 0.37 0.76 0.48 0.62 Mn 0.03 0.02 0.02 0.03 0.01 0.02 0.02 0.01 0.01 Fe2+ 1.76 1.67 1.72 1.86 1.71 1.79 1.61 1.50 1.55 Li* 0.22 0.17 0.19 0.35 0.23 0.28 0.24 0.18 0.21 Z-Site Al 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 X-Site Ca 0.08 0.01 0.02 0.02 0.01 0.02 0.07 0.01 0.02 Na 0.59 0.47 0.53 0.66 0.55 0.60 0.60 0.51 0.55 K 0.01 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.00 X□ 0.51 0.32 0.45 0.43 0.32 0.37 0.48 0.36 0.42 V+W-Site OH 4.00 3.95 3.99 4.00 3.97 3.99 4.00 3.95 3.99 F 0.05 0.00 0.00 0.03 0.00 0.00 0.05 0.00 0.01 Cl 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 Na/(Na+Ca) 0.99 0.88 0.97 0.98 0.97 0.98 0.99 0.88 0.96 Fe/(Fe+Mg) 0.85 0.77 0.83 0.84 0.81 0.83 0.76 0.66 0.71 Fe/Mg 5.80 3.33 5.04 5.24 4.34 4.81 3.24 1.97 2.53 注:结构式基于31个阴离子(O,OH,F). B2O3和H2O按化学计量计算,B=3 apfu,OH+F=4 apfu;Li*=[15−(T+Z+Y)总阳离子]计算;Total*含量在上述计算结果基础上计算获得. 表 2 摩天岭黑云母花岗岩中电气石微量元素分析结果(×10−6)
Table 2. Summary of traceelements (×10−6) of tourmaline from the Motianling biotite granitic pluton
类型 Tur-1(n=9) Tur-2(n=10) Tur-3(n=10) 最大值 最小值 平均值 最大值 最小值 平均值 最大值 最小值 平均值 Li 127.01 76.23 96.45 452.68 100.45 263.34 108.61 91.50 103.09 Be 4.23 1.68 3.09 110.53 4.42 43.47 10.99 4.07 7.13 V 52.42 9.00 17.42 53.98 10.92 31.59 72.52 34.94 57.72 Sc 27.21 4.76 9.04 188.18 31.77 94.85 18.17 7.86 12.87 Co 7.27 0.11 1.59 8.22 1.37 4.32 15.98 8.44 13.43 Zn 343.27 282.78 307.92 1511.13 249.26 805.85 270.64 197.86 237.28 Ni 11.90 0.14 2.06 7.10 1.86 4.34 8.81 3.22 7.07 Cu 0.86 0.00 0.24 6.73 0.00 1.79 0.88 0.00 0.35 Ga 74.48 51.49 60.10 510.37 83.38 249.91 61.16 47.52 53.89 Rb 0.12 0.00 0.04 4.32 0.03 0.76 1.21 0.00 0.13 Sr 18.22 1.65 4.76 8.89 0.61 3.96 34.03 13.66 22.10 Y 0.57 0.02 0.15 1.28 0.00 0.46 1.55 0.13 0.35 Nb 0.87 0.15 0.48 69.03 0.41 21.71 12.21 1.80 6.01 Ta 0.88 0.15 0.55 71.49 0.88 33.08 10.72 1.38 4.71 Zr 0.26 0.03 0.09 1.89 0.04 0.44 1.63 0.15 0.85 Hf 0.07 0.00 0.02 0.44 0.01 0.11 0.25 0.00 0.11 Sn 6.88 2.96 4.30 162.06 3.49 47.01 76.38 17.03 41.73 W 0.10 0.00 0.04 0.57 0.00 0.18 1.15 0.07 0.41 Pb 3.07 0.98 1.73 10.14 1.20 4.42 5.83 2.77 4.16 Th 0.03 0.00 0.01 0.71 0.00 0.11 0.30 0.00 0.09 U 0.02 0.00 0.00 1.69 0.00 0.18 0.03 0.00 0.01 ∑REE 10.23 1.00 2.55 20.60 1.09 5.27 17.65 0.99 7.07 -
[1] 陈 峰,颜丹平,邱 亮,杨文心,汤双立,郭庆银,张翼西.2019.江南造山带西南段摩天岭穹隆脆韧性剪切与铀成矿作用[J]. 岩石学报,35(9):2637-2659.
[2] 陈希节,贠晓瑞,雷 敏,张盛生,蔡志慧,刘若涵,李振宇,何碧竹.2022.青海共和盆地三叠纪中酸性侵入岩中电气石化学组成、硼同位素特征及对岩浆-热液演化的启示[J]. 岩石学报,38(11):3359-3374. doi: 10.18654/1000-0569/2022.11.07
[3] 凤永刚,梁 婷,王梦玺,张 泽,郝媛媛,岑炬标,董紫艳.2022.东秦岭花岗伟晶岩中电气石地球化学特征及成矿指示意义[J]. 岩石学报,38(2):428-451.
[4] 郭 佳,严海波,凌明星,章荣清.2020.广西大厂地区黑云母花岗岩中电气石的化学组成及其对岩浆热液演化的指示[J]. 岩石学报,36(1):171-183. doi: 10.18654/1000-0569/2020.01.16
[5] 郭伟康,董随亮,张松浩,李光明,付建刚,张林奎,张 志.2025.西藏嘎波伟晶岩型锂矿中电气石组成、硼同位素特征及其地质意义[J]. 岩石学报,41(3):804-819.
[6] 黄世强,宋玉财,程 杨,薛传东,韩朝辉,庄亮亮.2016.滇西茅草坪脉状铜矿床电气石的发育特征、成分及其意义[J]. 岩石矿物学杂志,35(1):124-138. doi: 10.3969/j.issn.1000-6524.2016.01.009
[7] 蒋少涌,于际民,倪 培,凌洪飞.2000.电气石——成岩成矿作用的灵敏示踪剂[J]. 地质论评,46(6):594-604. doi: 10.3321/j.issn:0371-5736.2000.06.006
[8] 李乐广,王连训,朱煜翔,马昌前,佘振兵,曹 亮,冷双梁,闫育荞.2023.华南幕阜山北缘含稀有金属伟晶岩成矿时代及成矿过程[J]. 地球科学,48(9):3221-3244.
[9] 李献华,李寄嵎,刘 颖,陈多福,王一先,赵振华.1999.华夏古陆古元古代变质火山岩的地球化学特征及其构造意义[J]. 岩石学报,15(3):364-370. doi: 10.3321/j.issn:1000-0569.1999.03.005
[10] 李真真,秦克章,裴 斌,赵俊兴,施睿哲,赵泽龙,韩 日.2020.大兴安岭南段白音查干Sn-Ag-Zn-Pb矿床电气石矿物学特征及对岩浆-热液演化过程的启示[J]. 岩石学报,36(12):3797-3812. doi: 10.18654/1000-0569/2020.12.14
[11] 林文蔚,彭丽君.1994.由电子探针分析数据估算角闪石、黑云母中的Fe3+、Fe2+[J]. 长春地质学院学报,(2):155-162.
[12] 秦 亚,冯佐海,黄靖哲,白玉明,吴 杰,张桂林,万 磊.2021.桂北地区三门韧性剪切带的厘定及其构造意义[J]. 地球科学,46(11):4017-4032.
[13] 宋 昊,徐争启,倪师军,张成江,梁 军,程发贵,唐纯勇.2015.广西摩天岭岩体对江南造山带西南段构造演化的响应:来自新元古代花岗岩锆石U-Pb年代学证据[J]. 大地构造与成矿学,39(6):1156-1175.
[14] 唐 攀,唐菊兴,林 彬,李发桥,孙 渺,祁 婧,崔 洁,王梦蝶,熊 妍,傅渊慧,张忠坤,杨征坤,姚晓峰,谢金玲,陶 刚,杨欢欢.2024.西藏甲玛铜多金属矿电气石矿物学特征及其对热液流体演化的指示[J]. 中国地质,51(4):1123-1138.
[15] 王孝磊,周金城,陈 昕,张凤凤,孙梓铭.2017.江南造山带的形成与演化[J]. 矿物岩石地球化学通报,36(5):714-735+696. doi: 10.3969/j.issn.1007-2802.2017.05.003
[16] 王 臻,陈振宇,李建康,陈毓川.2022.川西甲基卡308号脉的矿物学特征及其岩浆-热液演化示踪[J]. 地质学报,96(6):2039-2061.
[17] 夏永旗,庹明洁,李 诺,祁冬梅,加纳提古丽·吾斯曼,王慧慧,王文波,李 婷,邰宗尧.2024.云母和电气石矿物化学特征对西昆仑大红柳滩地区伟晶岩型锂矿化的指示[J]. 地球科学,49(3):922-938.
[18] 徐争启,宋 昊,尹明辉,张成江,陈发贵,唐纯勇.2019.华南地区新元古代花岗岩铀成矿机制——以摩天岭花岗岩为例[J]. 岩石学报,35(9):2695-2710. doi: 10.18654/1000-0569/2019.09.05
[19] 叶凡琛,王凯兴.2024.热液蚀变与元素迁移:以广西摩天岭北部高芒铀矿化为例[J]. 华南地质,40(4):655-670. doi: 10.3969/j.issn.2097-0013.2024.04.005
[20] 于 淼,丰成友,刘洪川,李定武,王 辉,刘建楠,赵一鸣,李大新.2016.青海尕林格矽卡岩铁多金属矿床Fe-Ti氧化物及其热动力学意义[J]. 地球学报,37(2):204-214.
[21] 邹明亮,舒孝敬,范立亭,梁永东.2011.桂北摩天岭含铀花岗岩体岩石地球化学特征[J]. 矿物岩石地球化学通报,30(4):415-422. doi: 10.3969/j.issn.1007-2802.2011.04.010
[22] Buriánek D, Novák M. 2007. Compositional evolution and substitutions in disseminated and nodular tourmaline from leucocratic granites: Examples from the Bohemian Massif, Czech Republic[J]. Lithos, 95(1-2): 148-164. doi: 10.1016/j.lithos.2006.07.006
[23] Chen L, Wang Z Q, Yan Z, Gong J H, Ma S X. 2018. Zircon and cassiterite U-Pb ages, petrogeochemistry and metallogenesis of Sn deposits in the Sibao area, northern Guangxi: constraints on the Neoproterozoic granitic magmatism and related Sn mineralization in the western Jiangnan Orogen, South China[J]. Mineralogy and Petrology, 112: 437-463. doi: 10.1007/s00710-018-0554-2
[24] Codeço M S, Weis P, Trumbull R B, Hinsberg V V, Pinto F, Lecumberri-Sanchez P, Schleicher A M. 2021. The imprint of hydrothermal fluids on trace-element contents in white mica and tourmaline from the Panasqueira W-Sn-Cu deposit, Portugal[J]. Mineralium Deposita, 56: 481-508. doi: 10.1007/s00126-020-00984-8
[25] Drivenes K, Larsen R B, Müller A, Sørensen B E, Wiedenbeck M, Raanes M P. 2015. Late-magmatic immiscibility during batholith formation: Assessment of B isotopes and trace elements in tourmaline from the land's End granite, SW England[J]. Contributions to Mineralogy and Petrology, 169(9): 56.
[26] Geladi P, Isaksson H, Lindqvist L, Wold S, Esbensen K. 1989. Principal component analysis of multivariate images[J]. Chemometrics and Intelligent Laboratory Systems, 5(3): 209-220. doi: 10.1016/0169-7439(89)80049-8
[27] Grahn H, Geladi P. 1996. Application of multivariate data analysis techniques to NMR imaging[M]//Data Handling in Science and Technology. Elsevier, 18: 513-534.
[28] Greenacre M, Groenen P J F, Hastie T, D’Enza A I, Markos A, Tuzhilina E. 2022. Principal component analysis[J]. Nature Reviews Methods Primers, 2(1): 100. doi: 10.1038/s43586-022-00184-w
[29] Harlaux M, Kouzmanov K, Gialli S, Laurent S, Rielli A, Dini A, Chauvet A, Menzies A, Kalinaj M, Fontboté L. 2020. Tourmaline as a tracer of late-magmatic to hydrothermal fluid evolution: The world-class San Rafael tin (-copper) deposit, Peru[J]. Economic Geology, 115(8): 1665-1697. doi: 10.5382/econgeo.4762
[30] Henry D J, Dutrow B L, Grew E S, Anovite L M. 1996. Metamorphic tourmaline and its petrologic applications[J]. Reviews in Mineralogy, 33: 503-558.
[31] Henry D J, Dutrow B L. 2012. Tourmaline at diagenetic to low-grade metamorphic conditions: Its petrologic applicability[J]. Lithos, 154: 16-32. doi: 10.1016/j.lithos.2012.08.013
[32] Henry D J, Guidotti C V. 1985. Tourmaline in the central Swedish ore district[J]. Mineralium Deposita, 29: 189-205.
[33] Henry D J, Novák M, Hawthorne F C, Ertl A, Dutrow B L, Uher P, Pezzotta F. 2011. Nomenclature of the tourmaline-supergroup minerals[J]. American Mineralogist, 96(5-6): 895-913. doi: 10.2138/am.2011.3636
[34] Hu D L, Jiang S Y. 2020. In-situ elemental and boron isotopic variations of tourmaline from the Maogongdong deposit in the Dahutang W-Cu ore field of northern Jiangxi Province, South China: Insights into magmatic-hydrothermal evolution[J]. Ore Geology Reviews, 122: 103502. doi: 10.1016/j.oregeorev.2020.103502
[35] Li L G, Wang L X, Romer R L, Ma C Q, Cao L, Tian Y. 2025. Using tourmaline to trace Li mineralization in the Mufushan granitic batholith, South China[J]. Chemical Geology, 671: 122485. doi: 10.1016/j.chemgeo.2024.122485
[36] Li S S, Feng Z H, Qin Y, Pang, C J, Dai Y, Li S H, Cao J, Bai Y M, Wang C Z. 2020. The relationship between ductile shear zone and mineralization in the Jiufeng Sn deposit, northern Guangxi, South China: Evidence from structural analysis and cassiterite U-Pb dating[J]. Ore Geology Reviews, 124: 103655. doi: 10.1016/j.oregeorev.2020.103655
[37] Liu Y S, Hu Z C, Gao S, Günther D, Xu J, Cao G G, Chen H H. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 257(1-2): 34-43. doi: 10.1016/j.chemgeo.2008.08.004
[38] London D, Manning D A C. 1995. Chemical variation and significance of tourmaline from southwest England[J]. Economic Geology, 90(3): 495-519. doi: 10.2113/gsecongeo.90.3.495
[39] Pesquera A, Torres-Ruiz J, Gil-Crespo P P, Gil-Crespo, Jiang S Y. 2005. Petrographic, chemical and B-isotopic insights into the origin of tourmaline-rich rocks and boron recycling in the Martinamor Antiform (Central Iberian Zone, Salamanca, Spain)[J]. Journal of Petrology, 46(5): 1013-1044. doi: 10.1093/petrology/egi009
[40] Qiu L, Yan D P, Ren M H, Cao W T, Tang S L, Guo Q Y, Fan L T, Qiu J T, Zhang Y X, Wang Y W. 2018. The source of uranium within hydrothermal uranium deposits of the Motianling mining district, Guangxi, South China[J]. Ore Geology Reviews, 96: 201-217. doi: 10.1016/j.oregeorev.2018.04.001
[41] Rozendaal A, Bruwer L. 1995. Tourmaline nodules: indicators of hydrothermal alteration and SnZn(W) mineralization in the Cape Granite Suite, South Africa[J]. Journal of African Earth Sciences, 21(1): 141-155. doi: 10.1016/0899-5362(95)00088-B
[42] Tindle A G, Breaks F W, Selway J B. 2002. Tourmaline in petalite-subtype granitic pegmatites: evidence of fractionation and contamination from the Pakeagama Lake and Separation Lake areas of northwestern Ontario, Canada[J]. The Canadian Mineralogist, 40(3): 753-788. doi: 10.2113/gscanmin.40.3.753
[43] Trumbull R B, Beurlen H, Wiedenbeck M, Soares. 2013. The diversity of B-isotope variations in tourmaline from rare-element pegmatites in the Borborema Province of Brazil[J]. Chemical Geology, 352: 47-62. doi: 10.1016/j.chemgeo.2013.05.021
[44] van Hinsberg V J, Henry D J, Marschall H R. 2011. Tourmaline: an ideal indicator of its host environment[J]. The Canadian Mineralogist, 49(1): 1-16. doi: 10.3749/canmin.49.1.1
[45] Wang X L, Zhou J C, Qiu J S, Zhang W L, Liu X M, Zhang G L. 2006. LA-ICP-MS U-Pb zircon geochronology of the Neoproterozoic igneous rocks from Northern Guangxi, South China: Implications for tectonic evolution[J]. Precambrian Research, 145: 111-130. doi: 10.1016/j.precamres.2005.11.014
[46] Wu H H, Huang H, Zhang Z C, Yang S H, Gao Y B, Finch A A. 2024. Tourmaline chemical and boron isotopic constraints on the magmatic-hydrothermal transition and rare-metal mineralization in alkali granitic systems[J]. American Mineralogist, 109(8): 1461-1477. doi: 10.2138/am-2023-9131
[47] Xiang L, Wang R C, Erdmann S, Sizaret S, Lu J J, Zhang W L, Xie L, Che X D, Zhang R Q. 2018. Neoproterozoic mineralization in a hydrothermal cassiterite-sulfide deposit at Jiumao, northern Guangxi, South China: mineral-scale constraints on metal origins and ore-forming processes[J]. Ore Geology Reviews, 94: 172-192. doi: 10.1016/j.oregeorev.2018.01.013
[48] Yu Z, Liu L, Ling H, Chen P, Chen W, Hu T Y, Huang D. 2023. Apatite as a probe into the nature and origin of hydrothermal fluids responsible for U leaching in the Lujing granite-related U Deposits, South China[J]. Economic Geology, 118(5): 1177-1199. doi: 10.5382/econgeo.4992
[49] Zhang L, Chen Z Y, Wang F Y, White N C, Zhou T F. 2021. Release of uranium from uraninite in granites through alteration: Implications for the source of granite-related uranium ores[J]. Economic Geology, 116(5): 1115-1139. doi: 10.5382/econgeo.4822
[50] Zhao H D, Zhao K D, Palmer M R, Jiang S Y. 2019. In-situ elemental and boron isotopic variations of tourmaline from the Sanfang granite, South China: Insights into magmatic-hydrothermal evolution[J]. Chemical Geology, 504: 190-204. doi: 10.1016/j.chemgeo.2018.11.013
[51] Zhu K H, Wang K X, Gao S, Tan S, Liu X D, Bonnetti C, Wu K M, Yu C D, Sun L Q, Yang H. 2024. Unraveling the genetic type and metallogenetic mechanism of the oldest uranium deposit associated with granitoid, South China: A comprehensive analysis of whole-rock geochemistry, and elemental and U-Pb isotopic signatures of uranium minerals[J]. Ore Geology Reviews, 175: 106376. doi: 10.1016/j.oregeorev.2024.106376
-