Sediment and Geochemical Records of Paleoenvironmental Change during Linjiazhuang and Xingezhuang Formations at Albian Stage in the Laiyang Depression
-
摘要: 胶莱盆地是一白垩系发育较为完整的陆相含火山地层沉积盆地。白垩系中发现有大量恐龙骨骼、恐龙蛋, 以及其它动植物化石, 是研究陆相白垩纪古环境演变的重要地区。本文通过对胶莱盆地莱阳洼陷Albian阶林家庄组—辛格庄组地层沉积特征、碳酸盐碳氧同位素组成(δ13C, δ18O)、色度(L*, a*, b*)、碳酸盐含量、TOC含量, 以及风化指数(CIA)、古气候指数(C)等古环境指标的综合分析, 反映出 Albian阶古气候从早期偏冷干逐渐过渡到半干旱-半湿润状态。古气候总体上温暖湿润, 但也存在多次气候波动特征。偏重的碳同位素组成与 OAEs事件有较好的对应关系, 表明胶莱盆地在白垩纪时期陆相地层与海相地层之间存在一定的对比关系。碳酸盐碳、氧同位素组成特征表明, 高浓度大气 CO2可能是这两者之间联系的纽带。林家庄组—辛格庄组地层碳同位素组成显示, 陆相地层中OAE1c至少由3次次级旋回组成, 代表了气候的不稳定性和复杂性。Abstract: Jiaolai Basin is a Cretaceous terrestrial sediment basin with complete strata from the early to late period and includes magmatites among the sediment layers. Lots of dinosaur bone fossils and egg fossils, and even other animal bone and plant fossils were buried in the Cretaceous sediment layers. It is a key region to research the terrestrial paleoenvironmental change during the Cretaceous period. In this study, we surveyed the PM301 section of Linjiazhuang and Xingezhuang Formations in the Laiyang depression, which belongs to the Jiaolai Basin at Albian Stage in the field. Carbon and oxygen isotopes of carbonates (δ13C, δ18O), chromaticness(L*, a*, b*), carbonate content, TOC, and chemical index of alteration (CIA), paleoclimate index (C) had been done for the sediment samples collected from these two Formations. Based on these geochemical proxies, paleoclimate was reconstructed from the cold and dry early Albian Stage to semi-dry and semi-wet gradually, but on the whole, paleoclimate at Albian Stage was warm and wet with several climate oscillation. From the PM301 section, we can find that the heavier carbon isotope at Albian stage had a high correlation with ocean OAEs events, indicating a similarity between the terrestrial and ocean sediment environments. High atmospheric CO2 from volcano emissions may be a linkage between the terrestrial and ocean teleconnection. Based on the heavier carbon isotope excursion, OAE 1c can be divided into at least three sub-cycle stages, and it is inferred that the paleoclimate at Albian stage was unstable and complex.
-
Key words:
- Jiaolai Basin /
- Cretaceous /
- Albian stage /
- Linjiazhuang–Xingezhuang Formations /
- paleoenvironment
-
-
陈丕基, 施泽龙, 叶宁, 叶得泉. 1998. 松花江生物群与东北白垩系地层序列[J]. 古生物学报, 37(3): 380-385.
陈宗颜, 陈克龙, 罗正霞. 2011. 察尔汗地区130 ka B.P.以来湖相沉积物颜色记录的气候变化探讨[J]. 盐湖研究, 19(4):1-7.
顾知微. 1962. 记滇中几个晚白垩世淡水瓣鳃类化石并略回顾云南陆相白垩系的研究[J]. 古生物学报, 10(3): 287-311.
关有志. 1992. 科尔沁沙地的元素、粘土矿物与沉积环境[J]. 中国沙漠, 12(1): 9-15.
黄永建, 王成善, 顾健. 2008. 白垩纪大洋缺氧事件: 研究进展与未来展望[J]. 地质学报, 82(1): 21-30.
霍腾飞, 杨德彬, 许文良, 王枫, 刘海彬, 师江朋. 2015. 胶莱盆地早白垩世瓦屋夼组砂岩中碎屑锆石 U-Pb-Hf同位素组成及其构造意义[J]. 大地构造与成矿学, 39(2): 355-368.
季强. 2002. 论热河生物群[J]. 地质论评, 48(3): 290-296.
李杨, 方晶, 潘隆, 王福. 2018. 沉积物色度在古环境重建中的应用[J]. 气象科技进展, 8(6): 22-27.
柳永清, 旷红伟, 彭楠, 许欢, 刘燕学. 2011. 山东胶莱盆地白垩纪恐龙足迹与骨骼化石埋藏沉积相与古地理环境[J]. 地学前缘, 18(4): 9-24.
马宗晋, 杜品仁, 卢苗安. 2001. 地球的多圈层相互作用[J]. 地学前缘, 8(1): 3-8.
任天龙. 2019. 胶莱盆地东缘早白垩世莱阳群沉积序列及岩相古地理[J]. 山东国土资源, 35(7): 38-45.
史瑞萍, 朱日祥. 2002. 白垩纪地球物理场异常与地球深部动力学[J]. 地球物理学进展, 17(2): 295-300.
万晓樵, 李罡, 黄清华, 席党鹏, 陈丕基. 2013. 中国白垩纪陆相阶的划分与对比[J]. 地层学杂志, 37(4): 457-471.
王东坡, 刘立. 1994. 大陆裂谷盆地层序地层学的研究[J]. 岩相古地理, 14(3): 1-9.
王千锁, 宋友桂, 李吉均, 赵志军, 荣培. 2015. 末次冰期-间冰期旋回朝那黄土颜色特征及古气候意义[J]. 地理科学, 35(11): 1489-1494.
吴艳宏, 李世杰. 2004. 湖泊沉积物色度在短尺度古气候研究中的应用[J]. 地球科学进展, 19(5): 789-792.
席党鹏, 万晓樵, 李国彪, 李罡. 2019. 中国白垩纪综合地层和时间框架[J]. 中国科学: 地球科学, 49(1): 257-288.
张嘉良, 王强, 蒋顺兴, 程心, 李宁, 裘锐, 张鑫俊, 汪筱林.2017. 山东莱阳晚白垩世恐龙与恐龙蛋研究历史和新进展[J]. 古脊椎动物学报, 55(2): 187-200.
周家兴, 吴利杰, 于娟, 杨丽君. 2019. 铜川地区 11.4-1.5 ka B.P.期间黄土地球化学风化特征及其古气候意义[J]. 地球与环境, 47(1): 64-73.
ADAMS D D, HURTGEN M T, SAGEMAN B B. 2010. Volcanic triggering of a biogeochemical cascade during Oceanic Anoxic Event 2[J]. Nature Geoscience, 3(3): 201-204.
BARCLAY R S, McELWAIN J C, SAGEMAN B B. 2010. Carbon sequestration activated by a volcanic CO2 pulse during Ocean Anoxic Event 2[J]. Nature Geoscience, 3(3): 205-208.
BARRERA E, SAVIN, S. 1999. Evolution of late Campanian-Maastrichtian marine climates and oceans[J]. Special Paper of the Geological Society of America, 332: 245-282.
BERNER R A, KOTHAVALA Z. 2001. Geocarb Ⅲ : A revised model of atmospheric CO2 over Phanerozoic time[J]. American Journal of Science, 301(2): 182-204.
BERNER R A. 1994. GEOCARB Ⅱ : A revised model of atmospheric CO2 over Phanerozoic time[J]. American Journal of Science, 294: 56-91.
BRALOWER T J, CoBABE E, CLEMENT B, SLITER W V, OSBURN C L, LONGORIA J. 1999. The record of global change in mid-Cretaceous (Barremian-Albian) sections from the Sierra Madre, northeastern Mexico[J]. Journal of Foraminiferal Research, 29(4): 418-437.
BRALOWER T J, FULLAGAR P D, PAULL C K, DWYER G S, LECKIE R M. 1997. Mid-Cretaceous strontium-isotope stratigraphy of deep-sea sections[J]. Geological Society of America Bulletin, 109(11): 1421-1442.
CHEN Pei-ji, SHI Zhai-long, YE Ning, YE De-quan. 1998. Sungari biota and Cretaceous stratigraphic sequence of NE China[J]. Acta Palaeontologica Sinica, 37(3): 380-385(in Chinese with English abstract).
CHEN Zong-yan, CHEN Ke-long, LUO Zheng-xia. 2011. Climatic change recorded by the chroma of lacustrine sediments from 130 ka B. P. in Qarhan Area[J]. Journal of Salt Lake Research, 19(4): 1-7(in Chinese with English abstract).
CLARKE L J, JENKYNS H C. 1999. New oxygen isotope evidence for long-term Cretaceous climatic change in the Southern Hemisphere[J]. Geology, 27(8): 699-702.
CRONIN M, TAUXE L, CONSTABLE C, SELKIN P, PICK T.2001. Noise in the quite zone[J]. Earth and Planetary Science Letters, 190(1-2): 13-30.
CROWLEY T J, KIM K-Y. 1995. Comparison of longterm greenhouse projections with the geologic record[J]. Geophysical Research Letters, 22(8): 933-936.
ERBA E, TREMOLADA F. 2004. Nannofossil carbonate fluxes during the Early Cretaceous: Phytoplankton response to nutrification episodes, atmospheric CO2, and anoxia[J]. Paleoceanography and Paleoclimatology, 19(1): PA1008.
FLETCHER B J, BRENTNALL S J, ANDERSON C W, BERNER R A, BEERLING D J. 2008. Atmospheric carbon dioxide linked with Mesozoic and early Cenozoic climate change[J].Nature Geoscience, 1(2): 43-48.
GU Zhi-wei. 1962. Note on the occurrence of some late Cretaceous fresh-water lamellibranchs in the chusiung distract of central Yunnan with a brief review on the continental Cretaceous of Yunnan[J]. Acta Palaeontologica Sinica, 10(3): 287-311(in Chinese with English abstract).
GUAN You-zhi. 1992. The elements, clay mineral and depositional environment in Horqin sand land[J]. Journal of Desert Research, 12(1): 9-15(in Chinese with English abstract).
HAQ B U, HARDENBOL J, VAIL P R. 1987. Chronology of fluctuating sea levels since the Triassic[J]. Science, 235(4793):1156-1167
HERMAN A B, SPICER R A. 1996. Palaeobotanical evidence for a warm Cretaceous Arctic Ocean[J]. Nature, 380: 330-333.
HU Xiu-mian, JANSA L, WANG Cheng-shan, SARTI M, BAK K, WAGREICH M, MICHALIK J, SOTÁK J. 2004. Upper Cretaceous oceanic red beds (CORBs) in the Tethys: occurrences, lithofacies, age and environments[J]. Cretaceous Research, 26(1): 3-20.
HUANG Yong-jian, WANG Cheng-shan, GU Jian. 2008. Cretaceous ocean anoxic events: Research progress and forthcoming prospects[J]. Acta Geologica Sinica, 82(1): 21-30(in Chinese with English abstract).
HUBER B T, HODELL D A, HAMILTON C P. 1995. Middle-Late Cretaceous climate of the southern high latitudes: Stable isotopic evidence for minimal equator-to-pole thermal gradients[J]. Geological Society of America Bulletin, 107(10):l164-l19l.
HUBER B T, NORRIS R D, MACLCOD K G. 2002. Deep-sea paleotemperature record of extreme warmth during the Cretaceous[J]. Geology, 30(2): 123-126.
HUO Teng-fei, YANG De-bing, XU Wen-liang, WANG Feng, LIU Hai-bing, SHI Jiang-peng. 2015. U-Pb ages and Hf isotope compositions of detrital zircons from the sandstone in the early Cretaceous Wawukuang formation in the Jiaolai Basin, Shandong Province and its tectonic implications[J]. Geotectonica et Metallogenia, 39(2): 355-368(in Chinese with English abstract).
JENKYNS H C. 1980. Cretaceous anoxic events: from continents to oceans[J]. Journal of the Geological Society, 137(2):171-188.
JENKYNS H C. 2010. Geochemistry of oceanic anoxic events[J].Geochemistry, Geophysics, Geosystems, 11(3): Q03004.
JI Qiang, LI Hong-qi, MICHELLE B L, LIU Yu-sheng, WINSHIP T D. 2004. Early Cretaceous Archaefructus eoflora sp. nov.with bisexual flowers from Beipiao, western Liaoning, China[J]. Acta Geologica Sinica(English edition), 78(4): 883-896.
JI Qiang. 2002. On the Mesozoic Jehol biota of China[J]. Geological Review, 48(3): 290-296(in Chinese with English abstract).
JONES C E, JENKYNS H J. 2001. Seawater strontium isotopes, oceanic anoxic events, and seafloor hydrothermal activity in the Jurassic and Cretaceous[J]. American Journal of Science, 301(2): 112-149.
KAIHO K, SAITO S. 1994. Oceanic crust production and climate during the last 100 Myr[J]. Terra Nova, 6(4): 376-384.
KELLER G. 2008. Cretaceous climate, volcanism, impacts, and biotic effects[J]. Cretaceous Research, 29(5-6): 754-771.
LARSON R L. 1991. Latest pulse of earth: Evidence for a mid-Cretaceous superplume[J]. Geology, 19(6): 547-550.
LECKIE R M, BRALOWER T J, CASHMAN R. 2002. Oceanic anoxic events and plankton evolution: Biotic response to tectonic forcing during the mid-Cretaceous[J]. Paleoceanography and Paleoclimatology, 17(3): 13-1-13-29.
LI Yang, FANG Jing, PAN Long, WANG Fu. 2018. Application of sediment chromaticity in paleo-environment reconstruction[J].Advances in Meteorological Science and Technology, 8(6):22-27(in Chinese with English abstract).
LIU Yong-qing, KUANG Hongwei, PENG Nan, XU Huan, LIU Yan-xue. 2011. Sedimentary facies of dinosaur trackways and bonebeds in the Cretaceous Jiaolai Basin, eastern Shandong, China, and their paleogeographical implications[J]. Earth Science Frontiers, 18(4): 9-24(in Chinese with English abstract).
LLOYD C R. 1982. The mid-Cretaceous earth: Paleogeography; ocean circulation and temperature; atmospheric circulation[J].The Journal of Geology, 90(4): 393-413.
MA Zong-jing, DU Pin-ren, LU Miao-an. 2001. Multi-layered interaction of the earth[J]. Earth Science Frontiers, 8(1):3-8(in Chinese with English abstract).
MEYERS P A. 2005. Paleoceanographic and paleoclimatic similarities between Mediterranean sapropels and Cretaceous black shales[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 235(1): 305-320.
MILLÁN M I, WEISSERT H J, FERNÁNDEZ-MENDIOLA P A, GARCIÁ-MONDÉJAR J. 2009. Impact of Early Aptian carbon cycle perturbations on evolution of a marine shelf system in the Basque-Cantabrian Basin (Aralar, N Spain)[J]. Earth and Planetary Science Letters, 28(3): 392-401
NAGAO S, NAKASHIMA S. 1992. The factors controlling vertical color variations of North Atlantic Maderia Abyssal Plain sediments[J]. Marine Geology, 109(1-2): 83-94.
NESBITT H W, YONG G M. 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature, 299: 715-717.
NORRIS R D, BICE K L, MAGNO E A, WILSON P A. 2002.Jiggling the tropical thermostat in the Cretaceous hothouse[J].Geology, 30(4): 299-302.
OTTO-BLIESNER B L, BRADY E C, SHIELDS C. 2002. Late Cretaceous ocean: Coupled simulations with the national center for atmospheric research climate system model[J].Journal of Geophysical Research, 107(D2): 11-1-11-14.
REN Tian-long. 2019. Analysis on sedimentary sequence and lithofacies paleogeography of early Cretaceous Laiyang Group in eastern Jiaolai Basin[J]. Shandong Land and Resources, 35(7): 38-45(in Chinese with English abstract).
ROYER D L, BERNER R A, MONTANEZ I P, TABOR N J, BEERLING D J. 2004. CO2 as a primary driver of Phanerozoic climate[J]. GSA Today, 14(3): 3-7.
ROYER D L. 2006. CO2-forced climate thresholds during the Phanerozoic[J]. Geochimica et Cosmochimica Acta, 70(23):5665-5675.
SEPKOSKI J J. 1981. A factor analytic description of the Phanerozoic marine fossil record[J]. Paleobiology, 7(1): 36-53.
SHI Rui-ping, ZHU Ri-xiang. 2002. Possible links between abnormal geological events and geodynamics during Cretaceous[J]. Progress in Geophysics, 17(2): 295-300(in Chinese with English abstract).
SKELTON P W.2003. The Cretaceous World[M]. Cambridge:Cambridge University Press: 1-350.
STOLL H M, SCHRAG D P. 2000. High-resolution stable isotope records from the Upper Cretaceous rocks of Italy and Spain:Glacial episodes in a greenhouse planet?[J]. GSA Bulletin, 112(2): 308-319.
SUN Yue-wu, LI Xiang, ZHAO Guo-wei, LIU Huan, ZHANG Yan-long. 2016. Aptian and Albian atmospheric CO2 changes during oceanic anoxic events: Evidence from fossil Ginkgo cuticles in Jilin Province, Northeast China[J]. Cretaceous Research, 62: 130-141.
TARDUNO J A, SAGGER W W. 1995. Polar standstill of the mid-Cretaceous Pacific Plate and its geodynamic implications[J]. Science, 269(5226): 956-959.
WAGNER T, HERRLE J O, SINNINGHE DAMSTÉ J S, SCHOUTEN S, STÜSSER I, HOFMANN P. 2008. Rapid warming and salinity changes of Cretaceous surface waters in the subtropical North Atlantic[J]. Geology, 36(3): 203-206.
WAN Xiao-jiao, LI Gang, HUANG Qing-hua, XI Dang-peng, CHEN Pei-ji. 2013. Division and correlation of terrestrial Cretaceous stages in China[J]. Journal of Stratigraphy, 37(4):457-471(in Chinese with English abstract).
WANG Cheng-shan, HU Xiu-mian, SARTI M, SCOTT R W, LI Xiang-hui. 2005. Upper Cretaceous oceanic red beds in southern Xizang: a major change from anoxic to oxic, deep-sea environments[J]. Cretaceous Research, 26(1): 21-32.
WANG Dong-po, LIU Li. 1994. Sequence startigraphy in continental rift basins[J]. Sedimentary and Palaeogeography, 14(3):1-9(in Chinese with English abstract).
WANG Qian-suo, SONG You-gui, LI Ji-jun, ZHAO Zhi-jun, RONG Pei. 2015. Characteristics of color in Chaona section and its paleoclimatic significance during the Last Glacial-interglacial cycle[J]. Scientia Geographica Sinica, 35(11):1489-1494(in Chinese with English abstract).
WANG Yong-dong, HUANG Cheng-min, SUN Bai-nian, QUAN Cheng, WU Jing-yu, LIN Zhi-cheng. 2014. Paleo-CO2 variation trends and the Cretaceous greenhouse climate[J].Earth-Science Reviews, 129: 136-147.
WANLLISER O H.1996. Global events and events stratigraphy in the Phanerozoic[M]. Heidelberg: Springer-verlag: 242-252.
WEEDON G, JENKYNS H C. 2003. Evidence for rapid climate change in the Mesozoic-Palaeogene greenhouse world[J].Philosophical Transactions of the Royal Society A Mathematical Physical and Engineering Sciences, 361(1810):1885-1916.
WEISSERT H, LINI A, FÖLLMI K B, KUHN O. 1998. Correlation of Early Cretaceous carbon isotope stratigraphy and platform drowning events: a possible link?[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 137(3): 189-203.
WILSON P A, NORRIS R D. 2001. Warm tropical ocean surface and global anoxia during the mid-Cretaceous period[J]. Nature, 412(6845): 425-429.
WU Yan-hong, LI Shi-jie. 2004. Significance of lake sediment color for short time scale climate variation[J]. Advance in Earth Science, 19(5): 789-792(in Chinese with English abstract).
XI Dang-peng, WAN Xiao-jiao, LI Guo-biao, LI Gang. 2019.Cretaceous integrative stratigraphy and timescale of China[J].Science Sinica(Terrae), 49(1): 257-288(in Chinese with English abstract).
ZHANG Jia-liang, WANG Qiang, JIANG Shun-xing, CHENG Xin, LI Ning, QIU Rui, ZHANG Xin-jun, WANG Xiao-lin. 2017.Review of historical and current research on the Late Cretaceous dinosaurs and dinosaur eggs from Laiyang, Shandong[J].Vertebrata Palasiatica, 55(2): 187-200(in Chinese with English abstract).
ZHANG Cheng-jun, FAN Rong, LI Jun, MISCHKE S, DEMBELE I, HU Xiao-lan. 2013. Carbon and oxygen isotopic compositions: How lacustrine environmental factors respond in northwestern and northeastern China[J]. Acta Geologica Sinica, 87(5): 1344-1354.
ZHAO Xi-xi. 2005. The Earth’s magnetic field and global geologic phenomena in Mid-Cretaceous[J]. Earth Science Frontiers, 12(2): 199-216.
ZHOU Jia-xing, WU Li-jie, YU Juan, YANG Li-jjun. 2019. Characteristics of geochemical weathering of loess in the Tongchuan area during 11.4-1.5 ka B.P. and its paleoclimatic implications[J]. Earth and Environment, 47(1): 64-73(in Chinese with English abstract).
-
计量
- 文章访问数: 75
- PDF下载数: 42
- 施引文献: 0

下载: