Effects of Land Use Type on Distribution of Glomalin-related Soil Protein in the Huixian Karst Wetland, Guilin
-
摘要: 土壤丛枝菌根真菌分泌的球囊霉素相关土壤蛋白(GRSP)是土壤碳库变化的重要指标, 为明确其在会仙岩溶湿地不同土地利用方式下的分布特征及影响因素, 以会仙岩溶沼泽, 并由其转变而来的水稻田、旱地、果园和弃耕地4种不同土地利用方式为研究对象, 采集0-10 cm、10-20 cm和20-40 cm这3个层次的土样, 对不同土地利用方式下球囊霉素相关土壤蛋白分布特征及其与土壤因子的关系进行了研究。结果表明, 不同土层总球囊霉素相关土壤蛋白(T-GRSP)含量为1.08~3.35 mg/g, 占土壤有机碳的12.33%~19.73%, 球囊霉素相关土壤蛋白是湿地土壤中的一个重要碳库。球囊霉素相关土壤蛋白在不同土地利用方式和土层之间均表现出显著差异, 随土层深度的增加表现出降低趋势。沼泽土壤中总球囊霉素相关土壤蛋白、易提取球囊霉素相关土壤蛋白(EE-GRSP)含量和有机碳(SOC)的含量均高于其它4种土地利用方式(水稻田、旱地、园土和弃耕地)。GRSP分别与蛋白酶、SOC和全氮(TN)呈极显著正相关(P< 0.01), 分别与速效氮(AN)、速效磷(AP)、粘粒和粉粒呈显著正相关(P< 0.05)。EE-GRSP与SOC和TN呈极显著正相关(P< 0.01), 分别与蛋白酶和粘粒呈显著正相关(P< 0.05)。主成分分析表明, 粉粒、SOC、AN和TN是影响球囊霉素相关蛋白分布特征和反映会仙岩溶湿地土壤营养状况的主要因子。会仙岩溶湿地土壤中的球囊霉素相关土壤蛋白对土壤碳封存有重要贡献。关键词: 岩溶湿地; 球囊霉素相关土壤蛋白; 土地利用方式; 土壤蛋白酶; 土壤因子
-
关键词:
- 岩溶湿地 /
- 球囊霉素相关土壤蛋白 /
- 土地利用方式 /
- 土壤蛋白酶 /
- 土壤因子
Abstract: To identify the effects of land use type on the distribution of glomalin-related soil protein in the Huixian karst wetland, we selected five land use types (marsh wetland, reclaimed paddy field, reclaimed dry farmland, orchard and abandoned land) and examined soil profile distribution patterns and influencing factors of glomalin-related soil protein. Soil samples were collected from depths of 0-10 cm, 10-20 cm, and 20-40 cm, respectively. The results showed that total glomalin-related soil protein content ranges from 1.08~3.35 mg/g, accounting for 12.33%~19.73% of soil organic carbon content. Glomalin-related soil protein is, therefore, regarded as a major carbon pool in the soil of the Huixian karst wetland. Significant differences in glomalin-related soil protein content were observed among the land use types and soil layers (P< 0.05).Glomalin-related soil protein exhibits obvious vertical distribution pattern, which decreases with an increase in soil depth. GRSP and EE-GRSP of marsh wetlands was significantly higher than the content with the other four land use types. GRSP was directly related to soil protease, soil organic carbon, and total nitrogen (P< 0.01), and had a significant positive relationship with available nitrogen, available phosphorus, clay and silt; E-GRSP was directly related to soil organic carbon and total nitrogen (P< 0.01), and had a significant positive relationship with soil protease and clay. Principal component analysis showed that silt, soil organic carbon, total nitrogen and available nitrogen were the key factors affecting distribution characteristics of glomus-associated proteins and reflected soil nutrition status in the Huixian karst wetland. Glomalin-related soil protein in soils of the Huixian karst wetland is important for soil carbon sequestration.-
Key words:
- karst wetland /
- glomalin-rated soil protein (GRSP) /
- land use type /
- soil protease /
- soil factors
-
-
鲍士旦.2000. 土壤农化分析[M]. 北京: 中国农业出版社.
高秀兵, 邢丹, 陈瑶, 周富裕, 赵华富, 陈娟, 郭灿, 周玉锋.2016. 茶树根际球囊霉素相关土壤蛋白含量及其与土壤因子的关系[J]. 茶叶科学, 36(2): 191-200.
关松荫.1986. 土壤酶及其研究方法[M]. 北京: 农业出版社.
贺海升, 王琼, 裴忠雪, 王慧梅, 王文杰. 2015. 落叶松人工林球囊霉素相关土壤蛋白与土壤理化性质空间差异特性[J].生态学杂志, 34(12): 3466-3473.
贺学礼, 白春明, 赵丽莉. 2008. 毛乌素沙地沙打旺根围AM真菌的空间分布[J]. 应用生态学报, 19(12): 2711-2716.
黄科朝, 沈育伊, 徐广平, 黄玉清, 张德楠, 孙英杰, 李艳琼, 何文, 周龙武. 2018. 垦殖对桂林会仙喀斯特湿地土壤养分与微生物活性的影响[J]. 环境科学, 39(4): 1813-1823.
孔祥斌, 张凤荣, 齐伟, 徐艳. 2003. 集约化农区土地利用变化对土壤养分的影响--以河北省曲周县为例[J]. 地理学报, 58(3): 333-342.
李强. 2021. 土地利用方式对岩溶断陷盆地土壤细菌和真核生物群落结构的影响[J]. 地球学报, 42(3): 417-425.
李世杰, 蔡德所, 张宏亮, 沈德福, 赵湘桂, 李春海. 2009. 桂林会仙岩溶湿地环境变化沉积记录的初步研究[J]. 广西师范大学学报(自然科学版), 27(2): 94-100.
李晓林, 周文龙, 曹一平, 张俊伶. 1995. VA菌根菌丝对不同形态磷肥的吸收利用[J]. 北京农业大学学报, 4(3): 305-311.
刘瑾, 叶思源, 王家生. 2017. 辽河三角洲滨海湿地有机碳的时空演变、环境功能及其埋藏机制[J]. 地球学报, 38(S1):83-86.
刘灵, 廖红, 王秀荣, 严小龙. 2008. 磷有效性对大豆菌根侵染的调控及其与根构型、磷效率的关系[J]. 应用生态学报, 4(3): 564-568.
阙弘, 葛阳洋, 康福星, 凌婉婷. 2015. 南京典型利用方式土壤中球囊霉素含量及剖面分布特征[J]. 土壤, 47(4): 719-724.
沈育伊, 张德楠, 徐广平, 滕秋梅, 周龙武, 黄科朝, 牟芝熠, 孙英杰. 2021. 会仙喀斯特湿地三种典型植物叶片碳同位素(δ13C)特征及其指示意义[J]. 广西植物, 41(5): 769-779.
唐宏亮, 刘龙, 王莉, 巴超杰. 2009. 土地利用方式对球囊霉素土层分布的影响[J]. 中国生态农业学报, 17(6): 1137-1142.
王建, 周紫燕, 凌婉婷. 2016. 球囊霉素相关土壤蛋白的分布及环境功能研究进展[J]. 应用生态学报, 27(2): 634-642.
吴阳, 李强, 徐红伟, 乔磊磊, 李袁泽, 薛萐. 2018. 氮添加对白羊草土壤球囊霉素含量特征的影响[J]. 水土保持研究, 25(5): 61-65, 71.
徐广平, 李艳琼, 沈育伊, 张德楠, 孙英杰, 张中峰, 周龙武, 段春燕. 2019. 桂林会仙喀斯特湿地水位梯度下不同植物群落土壤有机碳及其组分特征[J]. 环境科学, 40(3):1491-1503.
张梦歌, 石兆勇, 杨梅, 卢世川, 王旭刚, 徐晓峰. 2020. 热带山地雨林土壤球囊霉素的分布特征[J]. 生态环境学报, 29(3):457-463.
BAI C M, HE X L, TANG H L, SHAN B Q, ZHAO L L. 2009.Spatial distribution of arbuscular mycorrhizal fungi, glomalin and soil enzymes under the canopy of Astragalus adsurgens Pall. in the Mu Us sandland, China[J]. Soil Biology and Biochemistry, 41(5): 941-947.
BAO Shi-dan.2000. Agrochemical analysis of soil[M]. Beijing:China Agriculture Press(in Chinese).
COMIS D. 2002. Glomalin: Hiding place for a third of the world’s stored soil carbon[J]. Agricultural Research, 50(9): 4-7.
DAYAMBA S D, DJOUDI H, ZIDA M, SAWADOGO L, VERCHOT L. 2016. Biodiversity and carbon stocks in different land use types in the Sudanian Zone of Burkina Faso, West Africa[J]. Agriculture, Ecosystems & Environment, 216:61-72.
EDENHOFER O, PICHS-MADRUGA R, SOKONA Y. 2014.Summary for policymakers[C]//Climate change 2014: Mitigation of climate change. IPCC’s Fifth Assessment Report.
GAO Xiu-bin, XING Dan, CHEN Yao, ZHOU Fu-yu, ZHAO Hua-fu, CHEN Juan, GUO Can, ZHOU Yu-feng. 2016. Contents of glomalin-related soil protein and its correlations with soil factors in the rhizosphere of tea plant [Camellia Sinensis(L.) O. Kuntze][J]. Journal of Tea Science, 36(2):191-200(in Chinese with English abstract).
GILLESPIE A W, FARRELL R E, WALLY F L, ROSS A R S, LEINWEBER P, ECKHARDT K U, REGIER T Z, BLYTH R I R. 2011. Glomalin-related soil protein contains non-mycorrhizal-related heat-stable proteins, lipids and humic materials[J].Soil Biology and Biochemistry, 43(4): 766-777.
GUAN Song-ying.1986. Soil enzyme and its research methods[M].Beijing: China Agriculture Press(in Chinese).
HALVORSON J J, GONZALEZ J M. 2006. Bradford reactive soil protein in Appalachian soils: distribution and response to incubation, extraction reagent and tannins[J]. Plant and Soil, 286(1): 339-356.
HE Hai-sheng, WANG Qiong, PEI Zhong-xue, WANG Hui-mei, WANG Wen-jie. 2015. Spatial variations of glomalin-related soil protein in Larix gmelinii plantations and possible relations with soil physicochemical properties[J]. Chinese Journal of Ecology, 34(12): 3466-3473(in Chinese with English abstract).
HE Xue-li, BAI Chun-ming, ZHAO Li-li. 2008. Spatial distribution of arbuscular mycorrhizal fungi in Astragalus adsurgens root-zone soil in Mu Us sand land[J]. Chinese Journal of Applied Ecology, 19(12): 2711-2716(in Chinese with English abstract).
HUANG Ke-chao, SHEN Yu-yi, XU Guang-ping, HUANG Yu-qing, ZHANG De-nan, SUN Ying-jie, LI Yan-qiong, HE Wen, ZHOU Long-wu. 2018. Effects of reclamation on soil nutrients and microbial activities in the Huixian karst wetland in Guilin[J]. Environmental Science, 39(4): 1813-1823(in Chinese with English abstract).
JANOS D P, GARAMSZEGI S, BELTRAN B. 2008. Glomalin extraction and measurement[J]. Soil Biology and Biochemistry, 40(3): 728-739.
KONG Xiang-bin, ZHANG Feng-rong, QI Wei, XU Yan. 2003.The influence of land use change on soil fertility in intensive agricultural region: A case study of Quzhou County, Hebei[J].Acta Geographica Sinica, 58(3): 333-342(in Chinese with English abstract).
LI Qiang. 2021. Land-use types leading to distinct ecological patterns of soil bacterial and eukaryota communities in karst graben basin[J]. Acta Geoscientica Sinica, 42(3): 417-425(in Chinese with English abstract).
LI Shi-jie, CAI De-suo, ZHANG Hong-liang, SHEN De-fu, ZHAO Xiang-gui, LI Chun-hai. 2009. Environmental changes record derived from sediment cores in Huixian karst wetlands, Guilin, China[J]. Journal of Guangxi Normal University(Natural Science Edition), 27(2): 94-100(in Chinese with English abstract).
LI Xiao-lin, ZHOU Wen-long, CAO Yi-ping, ZHANG Jun-lin.1995. The role of VA-mycorrhizal hyphae in phosphorus uptake of red clover from phosphorus sources of different solubilities[J]. Acta Agriculturae Universitatis Pekinensis, 4(3):305-311(in Chinese with English abstract).
LIANG W J. 2010. Effect of tillage systems on glomalin-related soil protein in an aquic brown soil[J]. Research Journal of Biotechnology, 5(3): 10-13.
LIU Jin, YE Si-yuan, WANG Jia-sheng. 2017. Organic carbon distribution, function and its burial processes in the coastal wetlands of the Liaohe Delta, Northeast of China[J]. Acta Geoscientica Sinica, 38(S1): 83-86(in Chinese with English abstract).
LIU Ling, LIAO Hong, WANG Xiu-rong, YAN Xiao-long. 2008.Regulation effect of soil pavailability on mycorrhizal infection in relation to root architecture and pefficiency of Glycine max[J]. Chinese Journal of Applied Ecology, 4(3): 564-568(in Chinese with English abstract).
LOVELOCK C E, WRIGHT S F, CLARK D A, RUESS R W. 2004.Soil stocks of glomalin produced by arbuscular mycorrhizal fungi across a tropical rain forest landscape[J]. Journal of Ecology, 92(2): 278-287.
MITSCH W J, BERNAL B, NAHLIK A M, MANDER U, ZHANG L, ANDERSON C J, JORGENSEN S E, BRIX H. 2013. Wetlands, carbon, and climate change[J]. Landscape Ecology, 28(4): 583-597.
NICHOLS K A, WRIGHT S F. 2006. Carbon and nitrogen in operationally defined soil organic matter pools[J]. Biology and Fertility of Soils, 43(2): 215-220.
NIE J, ZHOU J M, WANG H Y, CHEN X Q, DU C W. 2007. Effect of long-term rice straw return on soil glomalin, carbon and nitrogen[J]. Pedosphere, 17(3): 295-302.
PREGER A C, RILLIG M C, JOHNS A R, DUPREEZ C C, LOBE I, AMELUNG W. 2007. Losses of glomalin-related soil protein under prolonged arable cropping: A chronosequence study in sandy soils of the South African Highveld[J]. Soil Biology and Biochemistry, 39(2): 445-453.
PURIN S, RILLIG M C. 2007. The arbuscular mycorrhizal fungal protein glomalin: Limitations, progress, and a new hypothesis for its function[J]. Pedobiologia, 51(2): 123-130.
QIAN K M, WANG L P, YIN N N. 2012. Effects of AMF on soil enzyme activity and carbon sequestration capacity in reclaimed mine soil[J]. International Journal of Mining Science and Technology, 22(4): 553-557.
QUE Hong, GE Yang-yang, KANG Fu-xing, LING Wan-ting. 2015.Content and distribution of glomalin-related soil protein in soils of Nanjing under different land use types[J]. Soils, 47(4):719-724(in Chinese with English abstract).
QUIQUAMPOIX H, BURNS R G. 2007. Interactions between proteins and soil mineral surfaces: Environmental and health consequences[J]. Elements, 3(6): 401-406.
RILLIG M C, MUMMEY D L. 2006. Mycorrhizas and soil structure[J]. New Phytologist, 171(1): 41-53.
RILLIG M C, RAMSEY P W, MORRIS S, PAUL E A. 2003. Glomalin, an arbuscular-mycorrhizal fungal soil protein, responds to land-use change[J]. Plant and Soil, 253: 293-299.
RILLIG M C, WRIGHT S F, NICHOLS K A, SCHMIDT W F, TORN M S. 2001. Large contribution of arbuscular mycorrhizal fungi to soil carbon pools in tropical forest soils[J].Plant and Soil, 233: 167-177.
RILLIG M C, WRIGHT S F, SHAW M R, FIELD C B. 2002. Artificial climate warming positively affects arbuscular mycorrhizae but decreases soil aggregate water stability in an annual grassland[J]. Oikos, 97(1): 52-58.
RILLIG M C. 2004. Arbuscular mycorrhizae, glomalin, and soil aggregation[J]. Canadian Journal of Soil Science, 84(4):355-363.
ROSIER C L, HOYE A T, RILLIG M C. 2006. Glomalin-related soil protein: Assessment of current detection and quantification tools[J]. Soil Biology and Biochemistry, 38(8):2205-2211.
SHEN Yu-yi, ZHANG De-nan, XU Guang-ping, TENG Qiu-mei, ZHOU Long-wu, HUANG Ke-chao, MOU Zhi-yi, SUN Ying-jie. 2021. Characteristics and significance of δ13C of three typical aquatic plants in the Huixian karst wetland, Guilin[J]. Guihaia, 41(5): 769-779(in Chinese with English abstract).
SPOHN M, GIANI L. 2011. Impacts of land use change on soil aggregation and aggregate stabilizing compounds as dependent on time[J]. Soil Biology and Biochemistry, 43(5):1081-1088.
TANG Hong-liang, LIU Long, WANG Li, BA Chao-jie. 2009.Effect of land use type on profile distribution of glomalin[J].Chinese Journal of Eco-Agriculture, 17(6): 1137-1142(in Chinese with English abstract).
WANG Jian, ZHOU Zi-yan, LING Wan-ting. 2016. Distribution and environmental function of glomalin-related soil protein: A review[J]. Chinese Journal of Applied Ecology, 27(2):634-642(in Chinese with English abstract).
WANG W J, ZHONG Z L, WANG Q, WANG H M, FU Y J, HE X Y. 2017. Glomalin contributed more to carbon, nutrients in deeper soils, and differently associated with climates and soil properties in vertical profiles[J]. Scientific Reports, 7(1):13003.
WRIGHT S F, STARR J L, PALTINEANU I C. 1999. Changes in aggregate stability and concentration of glomalin during tillage management transition[J]. Soil Science Society of America Journal, 63(6): 1825-1829.
WRIGHT S F, UPADHYAYA A. 1996. Extraction of an abundant and unusual protein from soil and comparison with hyphal protein of arbuscular mycorrhizal fungi[J]. Soil Science, 161(9): 575-586.
WRIGHT S F, UPADHYAYA A. 1998. A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi[J]. Plant and Soil, 198:97-107.
WU Yang, LI Qiang, XU Hong-wei, QIAO Lei-lei, LI Yuan-ze, XUE Sha. 2018. Effects of nitrogen addition on characteristic of glomalin in the soil of bothriochloa ischaemum[J]. Research of Soil and Water Conservation, 25(5): 61-65, 71(in Chinese with English abstract).
XU Guang-ping, LI Yan-qiong, SHEN Yu-yi, ZHANG De-nan, SUN Ying-jie, ZHANG Zhong-feng, ZHOU Long-wu, DUAN Chun-yan. 2019. Soil organic carbon distribution and components in different plant communities along a water table gradient in the Huixian karst wetland in Guilin[J]. Environmental Science, 40(3): 1491-1503(in Chinese with English abstract).
ZHANG Meng-ge, SHI Zhao-yong, YANG Mei, LU Shi-chuan, WANG Xu-gang, XU Xiao-feng. 2020. Elevational distribution of glomalin-rated soil proteins in a tropical montane rain forest[J]. Ecology and Environmental Sciences, 29(3):457-463(in Chinese with English abstract).
-
计量
- 文章访问数: 51
- PDF下载数: 17
- 施引文献: 0