Hydrogeochemical Characteristics and Genesis of High-arsenic Groundwater in Hasuhai Area, Inner Mongolia
-
摘要: 哈素海区域高砷地下水对当地居民饮用水安全造成严重威胁, 揭示其形成演化机制对科学合理的开发利用水资源、保障居民身体健康具有重要意义。本文在水文地质调查的基础上, 应用Piper三线图、PHREEQC的砷形态计算及相关性分析等方法, 研究高砷地下水化学特征、构建砷形态模型(SM)和砷吸附模型(HSM), 以揭示高砷地下水的成因机制。结果表明, 研究区砷浓度为0.2~231.5 μg/L, 高砷区主要分布在大青山以南的冲湖积平原区; 地下水砷的类型以As(Ⅲ)为主, SM分析显示优势形态为H3AsO3, HSM分析显示存在Hfo_wH2AsO3和H3AsO3两种主要形态。地下水中的砷化物可能来源于山区富砷岩石的风化溶解以及第四系富砷河湖相沉积物; 研究区河湖相沉积环境是高砷水形成的前提, 有机质分解主导的还原环境是导致砷从含水介质释放到地下水中的主要因素, 弱碱性环境和的竞争吸附也会引起砷的释放。Abstract: High-arsenic groundwater in Hasuhai area poses a serious threat to the safety of drinking water for local residents.Elucidating its formation and evolution mechanism is of great significance to the scientific and sustainable development and utilization of water resources and the protection of the health of local residents.Based on hydrogeological investigations, we herein employed Piper diagrams, arsenic speciation calculations using PHREEQC, and correlation analysis to investigate high-arsenic groundwater.We studied the hydrogeochemical characteristics and constructed an arsenic speciation model (SM) and arsenic sorption model (HSM) to reveal the genetic mechanism of high-arsenic groundwater in the study area.Arsenic concentrations were found to vary between 0.2 and 231.5 µg/L, and high arsenic groundwater was mainly distributed in the alluvial plain south of Daqingshan Mountain.As(Ⅲ) was the main type of arsenic in shallow groundwater in the study area.SM showed that H3AsO3 was the dominant form of arsenic in the study area, whereas HSM showed that there were two main forms of arsenic, H3AsO3 and Hfo_wH2AsO3.Arsenic in groundwater may originate from the dissolution and weathering of the surrounding arsenic-rich rocks and Quaternary arsenic-rich fluvial and lacustrine sediments.The fluvial and lacustrine sedimentary environment in the study area is conducive to the formation of high-arsenic water, and the weakly alkaline reducing environment dominated by the decomposition of organic matter is the main driver of the transfer of arsenic from aquifers to groundwater.Additionally, the competitive adsorption ofpromotes the release of arsenic.
-
Key words:
- high-arsenic water /
- arsenic speciation /
- reducing environment /
- PHREEQC /
- competitive adsorption
-
-
高存荣, 冯翠娥, 刘文波, 赤井纯治, 久保田喜裕, 小林巌雄.2014a.地壳表层砷的循环与污染地下水模式[J].地球学报, 35(6): 741-750.
高存荣, 刘文波, 冯翠娥, 陈有鑑, 张国, 宋建新.2014b.干旱、半干旱地区高砷地下水形成机理研究: 以中国内蒙古河套平原为例[J].地学前缘, 21(4): 13-29.
李典, 邓娅敏, 杜尧, 颜港归, 孙晓梁, 范红晨.2021.长江中游河湖平原浅层地下水中砷空间异质性的同位素指示[J].地球科学, 46(12): 4492-4502.
刘白薇.2019.半干旱区水文地球化学演化规律及成因研究-以土默川平原为例[D].武汉: 中国地质大学(武汉).
刘晓波, 董少刚, 刘白薇, 冯海波, 李政葵, 刘力玮.2017.内蒙古土默川平原地下水水文地球化学特征及其成因[J].地球学报, 38(6): 919-929.
王焰新, 苏春利, 谢先军, 谢作明.2010.大同盆地地下水砷异常及其成因研究[J].中国地质, 37(3): 771-780.
王焰新.2007.地下水污染与防治[M].北京: 高等教育出版社.
杨会峰, 张翼龙, 孟瑞芳.2017.河套盆地构造控水研究及地下水系统划分[J].干旱区资源与环境, 31(3): 177-184.
袁鹏.2016.内蒙古土默特左旗砷中毒区砷的来源与富集研究[D].北京: 中国地质大学(北京).
张文琦, 董少刚, 马铭言, 赵镇, 陈悦.2021.岱海盆地地下水化学特征及成因[J].干旱区研究, 38(6): 1546-1555.
BANDARA U G C, DIYABALANAGE S, HANKE C, VAN GELDERN R, BARTH J A C, CHANDRAJITH R.2018.Arsenic-rich shallow groundwater in sandy aquifer systems buffered by rising carbonate waters: A geochemical case study from Mannar Island, Sri Lanka[J].Science of the Total Environment, 633: 1352-1359.
BIANCHINI G, BROMBIN V, MARCHINA C, NATALI C, GODEBO T R, RASINI A, SALANI G M.2020.Origin of fluoride and arsenic in the main Ethiopian rift waters[J].Minerals, 10(5): 453.
BOONKAEWWAN S, SONTHIPHAND P, CHOTPANTARAT S.2021.Mechanisms of arsenic contamination associated with hydrochemical characteristics in coastal alluvial aquifers using multivariate statistical technique and hydrogeochemical modeling: a case study in Rayong province, eastern Thailand[J].Environmental Geochemistry and Health, 43:537-566.
CAO Hai-long, XIE Xian-jun, WANG Yan-xin, PI Kun-fu, LI Jun-xia, ZHAN Hong-bin, LIU Peng.2018.Predicting the risk of groundwater arsenic contamination in drinking water wells[J].Journal of Hydrology, 560: 318-325.
CAO Wen-geng, GAO Zhi-peng, GUO Hua-ming, PAN Deng, QIAO Wen, WANG Shuai, REN Yu, LI Ze-yan.2022.Increases in groundwater arsenic concentrations and risk under decadal groundwater withdrawal in the lower reaches of the Yellow River basin, Henan Province, China[J].Environmental Pollution, 296: 118741.
CAO Wen-geng, GUO Hua-ming, ZHANG Yi-long, MA Rong, LI Ya-song, DONG Qiu-yao, LI Yuan-jie, ZHAO Rui-ke.2018.Controls of paleochannels on groundwater arsenic distribution in shallow aquifers of alluvial plain in the Hetao Basin, China[J].Science of the Total Environment, 613-614:958-968.
COUTURE R M, GOBEIL C, TESSIER A.2010.Arsenic, iron and sulfur co-diagenesis in lake sediments[J].Geochimica et Cosmochimica Acta, 74(4): 1238-1255.
DZOMBAK D A, MOREL F M M.1990.Surface complexation modeling: Hydrous ferric oxide[M].Toronto: Wiley-Interscience.
GAO Cun-rong, FENG Cui-e, LIU Wen-bo, AKAI Junji, KUBODA Yoshihiro, KOBAYASHI Iwao.2014.Patterns of arsenic cycle and groundwater arsenic contamination on the earth’s surface[J].Acta Geoscientica Sinica, 35(6):741-750(in Chinese with English abstract).
GAO Cun-rong, LIU Wen-bo, FENG Cui-e, CHEN You-jian, ZHANG Guo, SONG Jian-xin.2014.Research on the formation mechanism of high arsenic groundwater in arid and semi-arid regions: A case study of Hetao Plain in Inner Mongolia, China[J].Earth Science Frontiers, 21(4): 13-29(in Chinese with English abstract).
GUO Hua-ming, LI Yuan, ZHAO Kai, REN Yan, WEI Chao.2011.Removal of arsenite from water by synthetic siderite: Behaviors and mechanisms[J].Journal of Hazardous Materials, 186(2-3): 1847-1854.
HAUGEN E A, JURGENS B C, ARROYO-LOPEZ J A, BENNETT G L.2021.Groundwater development leads to decreasing arsenic concentrations in the San Joaquin Valley, California[J].Science of The Total Environment, 771:145223.
LI Dian, DENG Ya-min, DU Yao, YAN Gang-gui, SUN Xiao-liang, FAN Hong-chen.2021.Isotopic indication of spatial heterogeneity of arsenic in shallow groundwater of middle Yangtze River Lacustrine Plain[J].Earth Science, 46(12): 4492-4502(in Chinese with English abstract).
LIU Bai-wei.2019.Study on hydrogeochemical evolution and genesis analysis of semi-arid area-a case study of Tumochuan Plain[D].Wuhan: China University of Geosciences(in Chinese with English abstract).
LIU Rui-ping, QU Jiu-hui.2021.Review on heterogeneous oxidation and adsorption for arsenic removal from drinking water[J].Journal of Environmental Sciences, 110: 178-188.
LIU Xiao-bo, DONG Shao-gang, LIU Bai-wei, FENG Hai-bo, LI Zheng-kui, LIU Li-wei.2017.Hydrogeoehemical characteristics and genesis of groundwater in the Tumochuan Plain of Inner Mongolia[J].Acta Geoscientica Sinica, 38(6):919-929(in Chinese with English abstract).
MASUDA H.2018.Arsenic cycling in the Earth's crust and hydrosphere: interaction between naturally occurring arsenic and human activities[J].Progress in Earth and Planetary Science, 5: 68.
MENDEZ W M, EFTIM S, COHEN J, WARREN I, COWDEN J, LEE J S, SAMS R.2017.Relationships between arsenic concentrations in drinking water and lung and bladder cancer incidence in U.S.counties[J].Journal of Exposure Science & Environmental Epidemiology, 27: 235-243.
MUKHERJEE A, BHATTACHARYA P, SAVAGE K, FOSTER A, BUNDSCHUH J.2008.Distribution of geogenic arsenic in hydrologic systems: Controls and challenges[J].Journal of Contaminant Hydrology, 99(1-4): 1-7.
MURRAY J, ORUÉ M R, DE LAS MERCEDES LÓPEZ E, GARCÍA V H, KIRSCHBAUM A.2020.Geological-geomorphological and geochemical control on low arsenic concentration in the Lerma valley groundwater between the two high arsenic geologic provinces of Chaco-Pampean plain and Puna[J].Science of The Total Environment, 699: 134253.
QIAO Jiang-bo, ZHU Yuan-jun, JIA Xiao-xu, SHAO Ming-an, NIU Xiao-qian, LIU Jin-yue.2020.Distributions of arsenic and other heavy metals, and health risk assessments for groundwater in the Guanzhong Plain region of China[J].Environmental Research, 181: 108957.
QU Bin, ZHANG Yu-lan, KANG Shi-chang, SILLANPÄÄ M.2019.Water quality in the Tibetan Plateau: Major ions and trace elements in rivers of the “Water Tower of Asia”[J].Science of the Total Environment, 649: 571-581.
RAHMAN A, MONDAL N C, FAUZIA F.2021.Arsenic enrichment and its natural background in groundwater at the proximity of active floodplains of Ganga River, Northern India[J].Chemosphere, 265:129096.
SMEDLEY P L, KINNIBURGH D G.2002.A review of the source, behaviour and distribution of arsenic in natural waters[J].Applied Geochemistry, 17(5): 517-568.
SOSA N N, KULKARNI H V, DATTA S, BEILINSON E, PORFIDO C, SPAGNUOLO M, ZÁRATE M A, SURBER J.2019.Occurrence and distribution of high arsenic in sediments and groundwater of the Claromecó fluvial basin, southern Pampean plain (Argentina)[J].Science of The Total Environment, 695: 133673.
SUN Li-qun, LIANG Xing, MA Bin, LI Jing, ZHANG Xin, SONG Chen, LI Lin.2021.Characteristics of sedimentary environment since Quaternary in northern Jianghan Basin, China:Reconstruction of paleoenvironments[J].Quaternary International, 589: 12-24.
WANG Jun-yi, HE Zhong-tai.2020.Responses of stream geomorphic indices to piedmont fault activity in the Daqingshan area of China[J].Journal of Earth Science, 31(5): 978-987.
WANG Yan-xin, SU Chun-li.XIE Xian-jun, XIE Zuo-ming.2010.The genesis of high arsenic groundwater: a case study in Datong basin[J].Geology in China, 37(3): 771-780(in Chinese with English abstract).
WANG Yan-xin.2007.Groundwater Contamination[M].Beijing:High Education Press(in Chinese).
YANG Hui-feng, ZHANG Yi-long, MENG Rui-fang.2017.Study on water-controlling mechanism of structures and dividing result of groundwater system in Hetao Basin, Inner Mongolia[J].Journal of Arid Land Resources and Environment, 31(3): 177-184(in Chinese with English abstract).
YU Kai, DUAN Yan-hua, GAN Yi-qun, ZHANG Ya-nan, ZHAO Ke.2020.Anthropogenic influences on dissolved organic matter transport in high arsenic groundwater: Insights from stable carbon isotope analysis and electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry[J].Science of The Total Environment, 708: 135162.
YUAN Peng.2016.Study on the source and enrichment of arsenic in arsenic poisoning areas in Tuzuoqi, Inner Mongolia[D].Beijing: China University of Geosciences(in Chinese with English abstract).
ZHANG Gao-sheng, LIU Fu-dong, LIU Hui-juan, QU Jiu-hui, LIU Rui-ping.2014.Respective role of Fe and Mn oxide contents for arsenic sorption in iron and manganese binary oxide: An X-ray absorption spectroscopy investigation[J].Environmental Science & Technology, 48(17): 10316-10322.
ZHANG Jun-wen, YAN Ya-ni, ZHAO Zhi-qi, LI Xiao-dong, GUO Jian-yang, DING Hu, CUI Li-feng, MENG Jun-lun, LIU Cong-qiang.2021.Spatial and seasonal variations of dissolved arsenic in the Yarlung Tsangpo River, southern Tibetan Plateau[J].Science of The Total Environment, 760: 143416.
ZHANG Liang-miao, YANG Qing-chun, WANG Hao, GU Qing-bao, ZHANG Yu-ling.2022.Genetic interpretation and health risk assessment of arsenic in Hetao Plain of inner Mongolia, China[J].Environmental Research, 208: 112680.
ZHANG Qiang, WANG Da, ZHENG Quan-mei, ZHENG Yi, WANG Hui-hui, XU Yuan-yuan, LI Xin, SUN Gui-fan.2014.Joint effects of urinary arsenic methylation capacity with potential modifiers on arsenicosis: A cross-sectional study from an endemic arsenism area in Huhhot Basin, northern China[J].Environmental Research, 132: 281-289.
ZHANG Wen-qi, DONG Shao-gang, MA Ming-yan, ZHAO Zhen, CHEN Yue.2021.Chemical characteristics and origin of groundwater in the Daihai basin[J].Arid Zone Research, 38(6): 1546-1555(in Chinese with English abstract).
ZHANG Xiao, ZHAO Rong, WU Xiong, MU Wen-ping.2022.Hydrogeochemistry, identification of hydrogeochemical evolution mechanisms, and assessment of groundwater quality in the southwestern Ordos Basin, China[J].Environmental Science and Pollution Research, 29: 901-921.
ZHANG Zhuo, GUO Hua-ming, LIU Shuai, WENG Hai-cheng, HAN Shuang-bao, GAO Zhi-peng.2020.Mechanisms of groundwater arsenic variations induced by extraction in the western Hetao Basin, Inner Mongolia, China[J].Journal of Hydrology, 583: 124599.
ZHI Chuan-shun, CAO Wen-geng, WANG Zhen, LI Ze-yan.2021.High-arsenic groundwater in paleochannels of the Lower Yellow River, China: Distribution and genesis mechanisms[J].Water, 13(3): 338.
-
计量
- 文章访问数: 27
- PDF下载数: 5
- 施引文献: 0