Numerical Simulation of Organic Rankine Cycle for Enhanced Geothermal Systems Based on a Thermal-hydraulic-mechanical Coupling Model
-
摘要: 本文建立了耦合井筒、热储、有机朗肯循环发电系统的详细数学模型, 包括三维非稳态热流固耦合模型和有机朗肯循环发电系统热动力学模型, 参考青海省共和县恰卜恰干热岩体地热地质特征, 包括压裂储层、围岩、裂隙、井筒等特征参数, 研究了注入流量、注入温度和井间距对系统净输出功、年均净输出功和热效率的影响规律。结果表明: 在一定的注入流量、注入温度和净间距下, 随着时间的推移, 岩石孔隙压力和热应力作用使得裂隙渗透率增大, 注入泵功耗是降低的, 净输出功和热效率也是降低的。注入流量的增大提高了膨胀机轴功、注入泵功耗和生产温度衰减速率, 进而导致热效率降低, 存在最优的注入流量50 kg/s, 使得年均净输出功达到最大值1 470.1 kW。注入温度的增大可以提高系统热效率, 降低净输出功的年均衰减速率, 当注入温度为60 ℃时, 年均净输出功最大。井间距的增大减缓了生产温度的衰减速率, 有利于热效率的提高, 但是也同时也增大了膨胀机轴功和注入泵功耗。当分支井间距为 450 m时, 年均净输出功达到最大值1 497.3 kW。此研究可为增强地热发电系统的开发利用提供指导。Abstract: In this study, a detailed thermodynamic model coupled with wellbore, heat storage, and organic Rankine cycle power generation system was established, including a 3D unsteady thermal-hydraulic-mechanical(THM) coupled model and organic Rankine cycle power generation system thermodynamic model. Based on the geothermal geological characteristics of the Qiabuqia geothermal field in Gonghe Basin, Qinghai Province and the characteristic parameters of fractured reservoir, surrounding rock, fracture and wellbore, the effects of injection flow rate, injection temperature, and well spacing on net power output, annual net power output, and thermal efficiency were investigated. Under a certain injection flow rate, injection temperature, and net spacing, the pore pressure and thermal stress of rock increased the fracture permeability, and afterward, the power consumption of the injection pump and the net output work and thermal efficiency decreased. The increase in the injection flow improved the shaft work of the expander, power consumption of the injection pump, and drop rate of the production temperature, resulting in a decrease in thermal efficiency. The optimal injection flow rate at which the annual net power output reached a maximum value (1 470.1 kW) was 50 kg/s. The increase in injection temperature can improve thermal efficiency and reduce the annual drop rate of net power output. When the injection temperature was 60 ℃, the annual net output power was the maximum. The increase in well spacing slowed down the drop rate of production temperature, and this is conducive to the improvement of thermal efficiency; however, it also increased the power of the expander shaft and consumption power of the injection pump. The optimal well spacing at which the annual net power output reached the maximum value (1 497.3 kW)was 450 m. This study can provide guidance for the development and utilization of enhanced geothermal power generation system.
-
Key words:
- enhanced geothermal system /
- ORC /
- THM /
- net power output /
- thermal efficiency
-
-
冯波, 许佳男, 许天福, 李胜涛, 宋丹, 陈明涛. 2019. 化学刺激技术在干热岩储层改造中的应用与最新进展[J]. 地球科学与环境学报, 41(5): 577-591.
冯雨晴, 汪道兵, 秦浩, 张凯鑫, 边雨辰. 2021. 干热岩人工裂隙三维流动传热的数值模拟研究[J]. 北京石油化工学院学报, 29(4): 37-43.
何淼, 龚武镇, 许明标, 宋建建. 2021. 干热岩开发技术研究现状与展望分析[J]. 可再生能源, 39(11): 1447-1454.
贺甲元, 张伟, 张乐, 郭天魁, 王春光, 曲占庆. 2022. 基于THMD耦合的干热岩径向井压裂裂缝扩展[J/OL]. 地球物理学进展: 1-12. [2022-09-23]. http://kns.cnki.net/kcms/detail/11.2982.P.20220322.2034.009.html.
李骥飞. 2021. 干热岩发电技术模拟研究与性能分析[J]. 山东化工, 50(9): 114-119.
孙致学, 姜传胤, 张凯, 庄丽, 任小庆, 王强. 2020. 基于离散裂缝模型的CO2增强型地热系统THM耦合数值模拟[J]. 中国石油大学学报(自然科学版), 44(6): 79-87.
唐显春, 王贵玲, 马岩, 张代磊, 刘忠, 赵旭, 程天君. 2020. 青海共和盆地地热资源热源机制与聚热模式[J]. 地质学报, 94(7): 2052-2065.
唐显春, 王贵玲, 张代磊, 马岩. 2023. 青藏高原东北缘活动构造与共和盆地高温热异常形成机制[J]. 地球学报, 44(1):7-20.
王贵玲, 刘彦广, 朱喜, 张薇. 2020. 中国地热资源现状及发展趋势[J]. 地学前缘, 27(1): 1-9.
张超, 胡圣标, 黄荣华, 王朱亭, 秦松, 左银辉, 宋荣彩. 2022.干热岩地热资源热源机制研究现状及其对成因机制研究的启示[J]. 地球物理学进展, 37(5):1907-1919.
张智刚, 康重庆. 2022. 碳中和目标下构建新型电力系统的挑战与展望[J]. 中国电机工程学报, 42(8): 2806-2819.
周舟, 金衍, 曾义金, 张旭东, 周健, 汪文智, 孟翰. 2019. 青海共和盆地干热岩地热储层水力压裂物理模拟和裂缝起裂与扩展形态研究[J]. 吉林大学学报(地球科学版), 49(5):1425-1430.
BAI Bing. 2005. One-dimensional thermal consolidation characteristics of geotechnical media under non-isothermal condition[J]. Engineering Mechanics, 22(5): 186-191.
BARENDS F B. 2010. Complete solution for transient heat transport in porous media, following Lauwerier’s concept[C]//SPE annual technical conference and exhibition. Florence: Society of Petroleum Engineers.
DUNIAM S, GURGENCI H. 2016. Annual performance variation of an EGS power plant using an ORC with NDDCT cooling[J].Applied Thermal Engineering: Processes, Equipment, Economics, 105: 1021-1029.
EYERER S, SCHIFFLECHNER C, HOFBAUER S, BAUER W, WIELAND C, SPLIETHOFF H. 2020. Combined heat and power from hydrothermal geothermal resources in Germany:An assessment of the potential[J]. Renewable and Sustainable Energy Reviews, 120: 109661.
FALCONE G, LIU Xiao-lei, OKECH R R, SEYIDOV F, TEODORIU C. 2018. Assessment of deep geothermal energy exploitation methods: The need for novel single-well solutions[J]. Energy, 160: 54-63.
FENG Bo, XU Jia-nan, XU Tian-fu, LI Sheng-tao, SONG Dan, CHEN Ming-tao. 2019. Application and recent progresses of chemical stimulation on hot dry rock reservoir modification[J].Journal of Earth Sciences and Environment, 41(5): 577-591(in Chinese with English abstract).
FENG Yu-qing, WANG Dao-bing, QIN Hao, ZHANG Kai-xin, BIAN Yu-chen. 2021. Numerical simulation study of three-dimensional fluid and heat transfer in artificial fractures of hot dry rocks[J]. Journal of Beijing Institute of Petrochemical Technology, 29(4): 37-43(in Chinese with English abstract).
GUO Tian-kui, GONG Fa-cheng, WANG Xiao-zhi, LIN Qiang, QU Zhan-qing, ZHANG Wei. 2019. Performance of enhanced geothermal system (EGS) in fractured geothermal reservoirs with CO2 as working fluid[J]. Applied Thermal Engineering, 152: 215-230.
HE Jia-yuan, ZHANG Wei, ZHANG Le, GUO Tian-kui, WANG Chun-guang, QU Zhan-qing. 2022. Fracture propagation research of radial well fracturing in hot dry rock based on THMD coupling[J]. Progress in Geophysics, 1-12.[2022-09-23]. http://kns.cnki.net/kcms/detail/ 11.2982.P.20220322.2034.009.html(in Chinese with English abstract).
HE Miao, GONG Wu-zhen, XU Ming-biao, SONG Jian-jian. 2021.Reseaech status and prospect analysis of hot dry rock development technology[J]. Renewable Energy Resources, 39(11):1447-1454(in Chinese with English abstract).
HUANG Man, JIAO Yu-yong, LUO Jin, YAN Cheng-zeng, WU Liang-hong, GUAN Peng. 2020. Numerical investigation on heat extraction performance of an enhanced geothermal system with supercritical N2O as working fluid[J]. Applied Thermal Engineering, 176: 115436.
LEI Zhi-hong, ZHANG Yan-jun, YU Zi-wang, HU Zhong-jun, LI Liang-zhen, ZHANG Sen-qi, FU Lei, ZHOU Ling, XIE Yang-yang. 2019. Exploratory research into the enhanced geothermal system power generation project: The Qiabuqia geothermal field, Northwest China[J]. Renewable Energy, 139:52-70.
LEI Zhi-hong, ZHANG Yan-jun, ZHANG Sen-qi, FU Lei, HU Zhong-jun, YU Zi-wang, LI Liang-zhen, ZHOU Jian. 2020.Electricity generation from a three-horizontal-well enhanced geothermal system in the Qiabuqia geothermal field, China:Slickwater fracturing treatments for different reservoir scenarios[J]. Renewable Energy, 145: 65-83.
LEMMON E W, HUBER M L, MCLINDEN M O.2013. NIST standard reference database 23: Reference fluid thermodynamic and transport properties-REFPROP, version 9.1[M].National Institute of Standards and Technology, Standard Reference Data Program, Gaithersburg (2013) version 9.1.
LI Ji-fei. 2021. Simulation research and performance analysis of dry hot rock power generation technology[J]. Shandong Chemical Industry, 50(9): 114-119(in Chinese).
LI Meng-Ying, LIOR N. 2014. Comparative analysis of power plant options for enhanced geothermal systems (EGS)[J]. Energies, 7(12): 8427-8445.
LI Ting-yu, HAN Dong-xu, YANG Fu-sheng, LI Jing-fa, WANG Dao-bing, YU Bo, WEI Jin-jia. 2021. Modeling study of the thermal-hydraulic-mechanical coupling process for EGS based on the framework of EDFM and XFEM[J]. Geothermics, 89: 101953.
LIU Feng, KANG Yong, HU Yi, CHEN Hao, WANG Xiao-chuan, PAN Hai-zeng, XIE Jia-qiao. 2022. Comparative investigation on the heat extraction performance of an enhanced geothermal system with N2O, CO2 and H2O as working fluids[J]. Applied Thermal Engineering, 200: 117594.
MENG Nan, LI Tai-lu, WANG Jian-qiang, KONG Xiang-fei, JIA Ya-nan, LIU Qing-hua, QIN Hao-sen. 2021. Structural improvement and thermodynamic optimization of a novel supercritical CO2 cycle driven by hot dry rock for power generation[J]. Energy Conversion and Management, 235: 114014.
SUN Zhi-xue, JIANG Chuan-yin, ZHANG Kai, ZHUANG Li, REN Xiao-qing, WANG Qiang. 2020. Numerical simulation for heat extraction of CO2-EGS with thermal-hydraulic-mechanical coupling method based on discrete fracture models[J]. Journal of China University of Petroleum(Edition of Natural Science), 44(6): 79-87(in Chinese with English abstract).
TANG Xian-chun, WANG Gui-ling, MA Yan, ZHANG Dai-lei, LIU Zhong, ZHAO Xu, CHENG Tian-jun. 2020. Geological model of heat source and accumulation for geothermal anomalies in the Gonghe basin, northeastern Tibetan Plateau[J]. Acta Geologica Sinica, 94(7): 2052-2065(in Chinese with English abstract).
TANG Xian-chun, WANG Gui-ling, ZHANG Dai-lei, MA Yan.2023. Coupling Mechanism of Geothermal Accumulation and the Cenozoic Active Tectonics Evolution in Gonghe Basin, Northeastern Margin of the Tibetan Plateau[J]. Acta Geoscientica Sinica, 44(1): 7-20(in Chinese with English abstract).
WANG Gui-ling, LIU Yan-guang, ZHU Xi, ZHANG Wei. 2020. The status and development trend of geothermal resources in China[J]. Earth Science Frontiers, 27(1): 1-9(in Chinese with English abstract).
XU Tian-fu, YUAN Yi-long, JIA Xiao-feng, LEI Yu-de, LI Sheng-tao, FENG Bo, HOU Zhao-yun, JIANG Zhen-jiao.2018. Prospects of power generation from an enhanced geothermal system by water circulation through two horizontal wells: A case study in the Gonghe Basin, Qinghai Province, China[J]. Energy, 148: 196-207.
ZHANG Chao, HU Sheng-biao, HUANG Rong-hua, WANG Zhu-ting, QIN Song, ZUO Yin-hui, SONG Rong-cai. 2022.Research status of heat source mechanism of the hot dry rock geothermal resources and its implications to the studies of genetic mechanism[J]. Progress in Geophysics, 37(5):1907-1919(in Chinese with English abstract).
ZHANG Fu-zhen, JIANG Pei-xue. 2012. Thermodynamic analysis of a binary power cycle for different EGS geofluid temperatures[J]. Applied Thermal Engineering, 48: 476-485.
ZHANG Yan-jun, LI Zheng-wei, GUO Liang-liang, GAO Ping, JIN Xian-peng, XU Tian-fu. 2014. Electricity generation from enhanced geothermal systems by oilfield produced water circulating through reservoir stimulated by staged fracturing technology for horizontal wells: A case study in Xujiaweizi area in Daqing Oilfield, China[J]. Energy, 78(C):788-805.
ZHANG Zhi-gang, KANG Chong-qing. 2022. Challenges and prospects for constructing the new-type power system towards a carbon neutrality future[J]. Proceedings of the CSEE, 42(8):2806-2819(in Chinese with English abstract).
ZHONG Chen-hao, XU Tian-fu, YUAN Yi-long, FENG Bo, YU Han. 2022. The feasibility of clean power generation from a novel dual-vertical-well enhanced geothermal system (EGS):A case study in the Gonghe Basin, China[J]. Journal of Cleaner Production, 344: 131109.
ZHOU Zhou, JIN Yan, ZENG Yi-jin, ZHANG Xu-dong, ZHOU Jian, WANG Wen-zhi, MENG Han. 2019. Experimental study on hydraulic fracturing physics simulation, crack initiation and propagation in hot dry rock geothermal reservoir in Gonghe Basin, Qinghai[J]. Journal of Jilin University(Earth Science Edition), 49(5): 1425-1430(in Chinese with English abstract).
-
计量
- 文章访问数: 21
- PDF下载数: 11
- 施引文献: 0