Study on Sustainable Heating Performance and Optimization Design of Medium-deep Coaxial Heat Exchanger
-
摘要: 中深层套管式换热器的热提取具有“取热不取水”的特点, 是我国北方地区稳妥推进中深层地热能供暖的重要技术之一。针对当前中深层套管式换热器在长期热提取期间供热性能不明的问题, 本文基于可持续供热的运行特点, 建立数值换热模型分析换热器水温、性能系数随运行年份的变化规律, 并针对性地开展设计优化研究。结果表明: 在可持续供热过程中, 换热器水温在前 5年的下降程度较为明显, 运行至20年以后, 基本不发生变化。换热器季节性能系数的下降程度受岩土体导热系数的影响较大, 在1.5 W/(m·K)条件下的SPF1、SPF2分别下降11.50%和 10.56%, 在 3.0 W/(m·K)条件下的SPF1、SPF2则分别下降4.73%和4.23%。岩土体导热系数越小, 换热器供热性能的下降程度越明显。基于可持续供热性能的变化规律, 提出以“准稳态特征年”的供热性能为基准进行设计, 并综合考虑运行要求与节能性要求优化换热器的运行条件, 明确了在不同地热特征参数、埋管深度下的最优运行流速与最佳供热负荷的分布情况, 对中深层套管式换热器的高效可持续供热设计具有实际指导意义。Abstract: Medium-deep coaxial heat exchanger (MDBHE) has the characteristic of “geothermal utilization without water extraction”, which is one of the important techniques to safely promote the medium-deep geothermal heating in northern China. As the heating performance of a MDBHE is unknown during long-term heat extraction, a numerical heat transfer model is proposed in this study to analyze the evolution of the fluid temperature and performance coefficient with the operating year based on the sustainable heating operation characteristics. Subsequently, a design optimization research was pertinently carried out. The results show that during the sustainable heating operation period, the fluid temperature of a MDBHE declines in the first five years and it barely changes after 20 years. The rock-soil thermal conductivity largely impacts the decline of the MDBHE seasonal performance factor. Under the condition of 1.5 W/(m·K), the heat source seasonal performance factor (SPF1) and heat pump unit seasonal performance factor (SPF2) reduce by 11.50% and 10.56%, respectively.In contrast, under the condition of 3.0 W/(m·K), the SPF1 and SPF2 only reduce by 4.73% and 4.23%, respectively. The decline is more pronounced under the condition of low rock-soil thermal conductivity.According to the sustainable heating performance evolution, the MDBHE design using heating performance in the “quasi-steady characteristics year” as a benchmark is proposed. Subsequently, the operating condition could be optimized by comprehensively considering the requirements of both operation and energy conservation.Consequently, the optimal operating velocities and heating loads of the MDBHE under the conditions of various geological parameters and pipe lengths were clarified, which have practical guiding significance for high-efficiency and sustainable heating design of MDBHE.
-
Key words:
- geothermal energy /
- medium-deep /
- heat exchanger /
- sustainability /
- heating
-
-
鲍玲玲, 徐豹, 王子勇, 李本军, 罗景辉. 2020. 中深层同轴套管式地埋管换热器传热性能分析[J]. 地球物理学进展, 35(4): 1217-1222.
蔡皖龙, 刘俊, 王沣浩, 王志华. 2020. 深层地埋管换热器换热性能模拟及稳定性研究[J]. 太阳能学报, 41(2): 158-164.
邓杰文, 魏庆芃, 张辉, 李建峰. 2017. 中深层地热源热泵供暖系统能耗和能效实测分析[J]. 暖通空调, 47(8): 150-154.
孔彦龙, 陈超凡, 邵亥冰, 庞忠和, 熊亮萍, 汪集旸. 2017. 深井换热技术原理及其换热量评估[J]. 地球物理学报, 60(12):4741-4752.
李奉翠, 韩二帅, 梁磊, 吴京安, 鲁冰雪. 2021. 中深层地热井下同轴换热器长期换热性能研究[J]. 煤田地质与勘探, 49(2): 194-201.
刘洪涛, 刘俊, 王沣浩, 蔡皖龙. 2021. 设计参数对中深层地埋管换热器长期换热性能的影响研究[J]. 可再生能源, 39(12):1594-1601.
陶文铨.2001. 数值传热学[M]. 西安: 西安交通大学出版社:78-88.
王沣浩, 蔡皖龙, 王铭, 高远, 刘俊, 王志华, 徐晗. 2021. 地热能供热技术研究现状及展望[J]. 制冷学报, 42(1): 14-22.
张育平, 王兴, 官燕玲.2020. 中深层地热钻井换热供暖关键技术[M]. 北京: 科学出版社.
BAO Ling-ling, XU Bao, WANG Zi-yong, LI Ben-jun, LUO Jing-hui. 2020. Heat transfer performance analysis of the middle-deep coaxial casing ground heat exchanger[J]. Progress in Geophysics, 35(4): 1217-1222(in Chinese with English abstract).
BU Xian-biao, MA Wei-bin, LI Hua-shan. 2012. Geothermal energy production utilizing abandoned oil and gas wells[J]. Renewable Energy, 41: 80-85.
CAI Wan-long, LIU Jun, WANG Feng-hao, WANG Zhi-hua. 2020.Research on heat transfer performance and stability of deep borehole heat exchanger[J]. Acta Energiae Solaris Sinica, 41(2): 158-164(in Chinese with English abstract).
DENG Jie-wen, WEI Qing-peng, LIANG Mei, HE Shi, ZHANG Hui. 2019. Field test on energy performance of medium-depth geothermal heat pump systems (MD-GHPs)[J]. Energy and Buildings, 184: 289-299.
DENG Jie-wen, WEI Qing-peng, ZHANG Hui, LI Jian-feng. 2017.On-site measurement and analysis on energy consumption and energy efficiency ratio of medium-depth geothermal heat pump systems for space heating[J]. Heating Ventilating and Air Conditioning, 47(8): 150-154(in Chinese with English abstract).
DIJKSHOORN L, SPEER S, PECHNIG R. 2013. Measurements and design calculations for a deep coaxial borehole heat exchanger in Aachen, Germany[J]. International Journal of Geophysics, 2013: 1-14.
FANG Liang, DIAO Nai-ren, SHAO Zhu-kun, ZHU Ke, FANG Zhao-hong. 2018. A computationally efficient numerical model for heat transfer simulation of deep borehole heat exchangers[J]. Energy and Buildings, 167: 79-88.
HEIN P, KOLDITZ O, GÖRKE U J, BUCHER A, SHAO Hai-bing. 2016. A numerical study on the sustainability and efficiency of borehole heat exchanger coupled ground source heat pump systems[J]. Applied Thermal Engineering, 100: 421-433.
HOLMBERG H, ACUÑA J, NAESS E, SØNJU O K. 2016. Thermal evaluation of coaxial deep borehole heat exchangers[J].Renewable Energy, 97: 65-76.
HUANG Yi-bin, ZHANG Yan-jun, XIE Yang-yang, ZHANG Yu, GAO Xue-feng. 2020. Thermal performance analysis on the composition attributes of deep coaxial borehole heat exchanger for building heating[J]. Energy and Buildings, 221:110019.
KOHL T, BRENNI R, EUGSTER W. 2002. System performance of a deep borehole heat exchanger[J]. Geothermics, 31(6):687-708.
KONG Yan-long, CHEN Chao-fan, SHAO Hai-bing, PANG Zhong-he, XIONG Liang-ping, WANG Ji-yang. 2017. Principle and capacity quantification of deep-borehole heat exchangers[J]. Chinese Journal of Geophysics, 60(12):4741-4752(in Chinese with English abstract).
LI Feng-cui, HAN Er-shuai, LIANG Lei, WU Jing-an, LU Bing-xue. 2021. Long-term heat transfer performance of underground coaxial heat exchanger for medium-deep geothermal[J]. Coal Geology and Exploration, 49(2): 194-201(in Chinese with English abstract).
LIU Hong-tao, LIU Jun, WANG Feng-hao, CAI Wan-long. 2021.Long-term thermal performance of medium-deep borehole heat exchanger under different design parameters[J]. Renewable Energy Resources, 39(12): 1594-1601(in Chinese with English abstract).
LIU Jun, WANG Feng-hao, CAI Wan-long, WANG Zhi-hua, WEI Qing-peng, DENG Jie-wen. 2019. Numerical study on the effects of design parameters on the heat transfer performance of coaxial deep borehole heat exchanger[J]. International Journal of Energy Research, 43(12): 6337-6352.
MORITA K, BOLLMEIER W S, MIZOGAMI H. 1992. An experiment to prove the concept of the downhole coaxial heat exchanger (DCHE) in Hawaii[J]. Transactions-Geothermal Resource Council, 16: 9-16.
PAN Sheng, KONG Yan-long, CHEN Chao-fan, PANG Zhong-he, WANG Ji-yang. 2020. Optimization of the utilization of deep borehole heat exchangers[J]. Geothermal Energy, 8: 6.
ŚLIWA T, KOTYZA J. 2003. Application of existing wells as ground heat source for heat pumps in Poland[J]. Applied Energy, 74(1-2): 3-8.
SONG Xian-Zhi, WANG Gao-sheng, SHI Yu, LI Rui-xia, XU Zheng-ming, ZHENG Rui, WANG Yu, LI Jia-cheng. 2018.Numerical analysis of heat extraction performance of a deep coaxial borehole heat exchanger geothermal system[J]. Energy, 164: 1298-1310.
TAO Wen-quan.2001. Numerical heat transfer[M]. Xi’an: Xi’an Jiaotong University Press: 78-88(in Chinese).
WANG Feng-hao, CAI Wan-long, WANG Ming, GAO Yuan, LIU Jun, WANG Zhi-hua, XU Han. 2021. Status and outlook for research on geothermal heating technology[J].Journal of Refrigeration, 42(1): 14-22(in Chinese with English abstract).
WANG Zhi-hua, WANG Feng-hao, LIU Jun, MA Zhen-jun, HAN Er-shuai, SONG Meng-jie. 2017. Field test and numerical investigation on the heat transfer characteristics and optimal design of the heat exchangers of a deep borehole ground source heat pump system[J]. Energy Conversion and Management, 153: 603-615.
WELSCH B, RÜHAAK W, SCHULTE D O, BÄR K, SASS I.2016. Characteristics of medium deep borehole thermal energy storage[J]. International Journal of Energy Research, 40(13): 1855-1868.
ZHANG Yu-ping, WANG Xing, GUAN Yan-ling.2020. Key technologies of medium-deep geothermal drilling, heat exchanging and heating[M]. Beijing: Science Press(in Chinese).
-
计量
- 文章访问数: 22
- PDF下载数: 6
- 施引文献: 0