Demand Forecast Research of Niobium Resources in China’s Iron and Steel Industry Based on the Principle of Identity
-
摘要: 铌主要应用于钢铁的生产, 含铌钢材广泛应用于航空航天、海洋工程、汽车与交通、能源化工及工程机械等高端制造领域。中国是当前世界第一大铌资源消费国, 供需矛盾极为突出, 严重依赖国外资源。为保障中国铌资源供应安全与钢铁产业结构调整提供依据, 本文基于恒等式原理构建了钢铁工业铌资源需求预测模型, 参考发达国家钢铁工业铌资源消费经验, 对中国钢铁工业铌需求进行了定量预测。研究结果表明: (1)中国铌工业和钢铁工业现代化程度明显落后于发达国家; (2)典型发达国家含铌钢产量占粗钢产量比例从最低值增长至最高值呈现出一定的规律性; (3)到2030 年, 中国钢铁工业铌资源需求将持续增长, 2025年钢铁工业铌资源需求为3.3~5.2 万t、2030 年为4.0~7.1 万t, 中国铌资源供应安全面临严峻挑战。为此, 本文建议持续扩大中国铌资源海外权益产量、提高国内储量、加强铌资源提取和二次资源回收技术研发来保障国内外铌资源稳定的供应, 同时推进国内铌相关产业建设。Abstract: Niobium is mainly used in steel production, and niobium-containing steel is widely used in high-end manufacturing fields such as aerospace, ocean engineering, automobile and transportation, engineering machinery, and energy and chemical industries. China is currently the largest niobium consumer globally. The contradiction between supply and demand is extremely prominent in China, which results in a heavy dependence on foreign supplies. To provide a basis for ensuring the supply security of niobium in China and the adjustment of the steel industry structure, this study constructs a prediction model of niobium demand in the steel industry based on the principle of identity and makes a quantitative prediction of niobium demand in China's steel industry by referring to the experience of niobium consumption in the steel industry of developed countries. The results show that: (1) the modernization of China’s niobium and steel industries lags behind that of developed countries; (2) in typical developed countries, the proportion of niobium-containing steel output to crude steel output increases from the lowest to the highest, showing a certain regularity; (3) the demand for niobium in China’s iron and steel industry will continue to grow, the demand for niobium in the iron and steel industry will be 33 to 52 thousand tons in 2025, and 40 to 71 thousand tons in 2030. Therefore, China’s niobium supply security is facing severe challenges. This study suggests the continuous expansion of China's overseas niobium equity production, expansion of domestic reserves, strengthened research and development of niobium extraction and secondary recovery technology to ensure the stable supply of niobium at home and abroad, and promotion of domestic niobium-related industries.
-
Key words:
- niobium /
- iron and steel industry /
- identity principle /
- demand forecasting /
- resource security
-
-
安泰科. 2022. 2021 年有色金属市场发展报告--钽铌[R]. 北京: 北京安泰科信息股份有限公司.
曹飞, 杨卉芃, 张亮, 王威. 2019. 全球钽铌矿产资源开发利用现状及趋势[J]. 矿产保护与利用, 39(5): 56-67, 89.
曹庭语. 2011. 日本稀有金属保障战略[J]. 国土资源情报, (4): 42-46.
崔志峰, 徐安军, 上官方钦. 2022. 国内外钢铁行业低碳发展策略分析[J]. 工程科学学报, 44(9): 1496-1506.
代涛, 文博杰, 梁靓, 姜含璐. 2017. 铅消费规律探索及中国需求预测[J]. 地球学报, 38(1): 61-68.
戴小文, 何艳秋, 钟秋波. 2015. 中国农业能源消耗碳排放变化驱动因素及其贡献研究--基于Kaya 恒等扩展与LMDI指数分解方法[J]. 中国生态农业学报, 23(11): 1445-1454.
戴艳阳, 钟海云, 李荐, 李庆奎. 2002. 从二次原料中回收钽 铌[J]. 矿产综合利用, (1): 32-36.
高芯蕊, 王安建. 2010. 基于“S”规律的中国钢需求预测[J]. 地球学报, 31(5): 645-652.
郭华, 张天柱. 2012. 中国钢铁与铁矿石资源需求预测[J]. 金属矿山, (1): 5-9.
郭青蔚. 2005. 铌在钢铁工业中的应用[J]. 稀有金属快报, 24(3): 31-34.
何海洋, 何敏, 李建武. 2018. 我国铌矿资源供需形势分析[J]. 中国矿业, 27(11): 1-5.
何季麟, 张宗国. 2006. 中国钽铌工业的现状与发展[J]. 中国金属通报, (48): 2-8.
刘兰娟, 谢美萍. 2004. 非线性动态系统的递归神经网络预测研究--对我国钢铁产量的预测分析[J]. 财经研究, 30(11): 26-33.
刘文浩. 2021. 加拿大公布 31 种关键矿产清单[EB/OL]. [2022-08-04]. http://www.casisd.cn/zkcg/ydkb/kjqykb/ 2021kjqykb/kjqykb202105/202108/t20210809_6155215.html.
陆钟武, 毛建素. 2003. 穿越“环境高山”--论经济增长过程中环境负荷的上升与下降[J]. 中国工程科学, (12): 36-42.
陆钟武, 王鹤鸣, 岳强. 2011. 脱钩指数: 资源消耗、废物排放与经济增长的定量表达[J]. 资源科学, 33(1): 2-9.
洛阳钼业. 2022. 洛阳栾川钼业集团股份有限公司2021 年度报告[EB/OL]. [2022-08-04]. http://file.finance.sina.com.cn/211. 154.219.97:9494/MRGG/CNSESH_STOCK/2022/2022-3/202 2-03-19/7898105.PDF.
孟凡君. 2022. 低碳技术助力钢铁行业实现“双碳”目标[N/OL]. 中 国 工 业 报 , 2022-05-10(002). [2022-08-04]. 10.28076/n.cnki.ncgyb.2022.000611.
倪航星. 2022. 铌回收料生产铌铁合金工艺研究[J]. 铁合金, 53(2): 28-30, 34.
欧强. 2020. 中国铌资源需求趋势分析及供应风险研究[D]. 北京: 中国地质大学(北京).
彭齐鸣. 2017. 提高战略性矿产供应能力, 推动新兴产业快速发展--在“战略性矿产供需形势分析研讨会”上的讲话[J]. 国土资源情报, (1): 1-3, 41.
戚向东. 2007. 2006 年我国钢铁行业运行情况及2007 年供需形势分析[J]. 中国钢铁业, (3): 5-11.
渠慎宁. 2019. 碳排放分解: 理论基础、路径剖析与选择评判[J].城市与环境研究, (3): 98-112.
谭东波, 李东永, 肖益林. 2018. “孪生元素”铌-钽的地球化学特性和研究进展[J]. 地球科学, 43(1): 317-332.
唐萍芝, 王寿成, 王京. 2021. 全球钨消费历史分析及需求预 测[J]. 中国国土资源经济, 34(1): 55-59, 83.
王安建, 王高尚, 陈其慎, 于汶加. 2010. 矿产资源需求理论与模型预测[J]. 地球学报, 31(2): 137-147.
王佳营, 俞礽安, 李志丹. 2020. 三头六臂的“铌”兄“钽”弟--走近稀有金属“铌钽”[J]. 国土资源科普与文化, 23(2): 14-18.
王京, 石香江, 牛丽贤, 张浩钰. 2015. 基于情景分析法的我国铜资源需求预测[J]. 中国国土资源经济, 28(5): 53-57.
王京, 石香江, 王寿成, 唐萍芝. 2019. 未来中国钴资源需求预测[J]. 中国国土资源经济, 32(10): 28-33.
王修, 李天骄, 王安建, 刘冲昊, 范凤岩. 2022. 基于主要工业产品产量的我国钽资源需求预测[J]. 矿业研究与开发, 42(6): 191-196.
王长建, 汪菲, 张虹鸥. 2016. 新疆能源消费碳排放过程及其影响因素--基于扩展的Kaya 恒等式[J]. 生态学报, 36(8): 2151-2163.
邢佳韵, 陈其慎, 张艳飞, 龙涛, 郑国栋, 王琨. 2019. 新能源汽车发展下锂钴镍等矿产资源需求展望[J]. 中国矿业, 28(12): 67-71.
姚同路, 吴伟, 杨勇, 贺庆, 孟华栋, 林腾昌. 2022. “双碳”目标下中国钢铁工业的低碳发展分析[J]. 钢铁研究学报, 34(6): 505-513.
殷为宏, 陈秦元, 傅俊岩, 褚幼义, 邵志俊. 1998. 中国铌加工工业和铌制品[J]. 稀有金属材料与工程, (1): 1-8.
袁路, 潘家华. 2013. Kaya 恒等式的碳排放驱动因素分解及其政策含义的局限性[J]. 气候变化研究进展, 9(3): 210-215.
袁小晶, 马哲, 李建武. 2019. 中国新能源汽车产业锂资源需求预测及建议[J]. 中国矿业, 28(8): 61-65.
张惠丽, 郭进平. 2006. 中国铁矿石需求预测系统动力学模型研究[J]. 金属矿山, (2): 22-25.
张鑫. 2022. 2021 年全球及中国铌资源开发利用现状分析, 铌铁进口贸易规模进一步扩大[EB/OL]. [2022-08-04]. http://huaon.com/channel/trend/804683.html.
张艳飞, 陈其慎, 于汶加, 柳群义, 李颖, 谭化川. 2015. 2015-2040 年全球铁矿石供需趋势分析[J]. 资源科学, 37(5): 921-932.
张泽南, 张照志, 吴晴, 潘昭帅, 徐恒逸. 2020. 中国锂矿资源需求预测[J]. 中国矿业, 29(7): 9-15.
郑明贵, 王佳男, 徐冰. 2018. 中国稀土中长期需求预测及政策建议--基于协整误差修正模型[J]. 稀土, 39(2): 148-158.
中国钢铁工业协会. 2020. 2019 年中国钢铁行业经济运行报告[EB/OL]. [2022-08-04]. http://lwzb.stats.gov.cn/pub/ lwzb/gzdt/202005/W020200528770641871558.pdf.
中国钢铁工业协会. 2021. 2020 年中国钢铁行业经济运行报告[EB/OL]. [2022-08-04]. http://lwzb.stats.gov.cn/pub/lwzb/ tzgg/202107/W020210723348607215248.pdf.
中国钢铁工业协会. 2022. 2021 年中国钢铁行业经济运行报告 [EB/OL]. [2022-08-04]. http://lwzb.stats.gov.cn/pub/lwzb/ tzgg/202205/W020220511403031962228.pdf.
中信微合金化技术中心.2019. 铌钢春秋(Ⅱ)(1979-2019)[M]. 北京市: 科学技术文献出版社.
周园园, 王京, 唐萍芝. 2018. 钼消费规律分析及未来10 年中国需求预测[J]. 资源与产业, 20(6): 24-29.
诸大建, 邱寿丰. 2007. 城市循环经济规划的分析工具及其应用--以上海为例[J]. 城市生态规划, 31(3): 64-69.
Antaike. 2022. 2021 nonferrous metals market development report-tantalum and niobium[R]. Beijing: Beijing Antaike Information Co., Ltd(In Chinese).
ASM. 2001. High-strength low-alloy steels[EB/OL]. [2022-08-04]. https://www.asminternational.org/documents/10192/3466171/061 17_chapter%203b.pdf/a764507a-3499-4d23-b348-5536d31c0ba2.
BLENGINI G A, BLAGOEVA D, DEWULF J, DE TORRES M C, NITA V, VIDAL-LEGAZ B, LATUNUSSA C E L, KAYAM Y, TALENS P L, BARANZELLI C, MANFREDI S, MANCINI L, NUSS P, MARMIER A, ALVES-DIAS P, PAVEL C, TZIMAS E, MATHIEUX F, PENNINGTON D, CIUPAGEA C. 2017. Assessment of the methodology for establishing the EU list of critical raw materials[R]. Luxemburg: Publications Office of the European Union.
CAO Fei, YANF Hui-peng, ZHANG Liang, WANG Wei. 2019. Current situation and trend analysis of global tantalum and niobium mineral resources[J]. Conservation and Utilization of Mineral Resources, 39(5): 56-67, 89(in Chinese with English abstract).
CAO Ting-yu. 2011. Japan's rare metal security strategy[J]. Land and Resources Information, (4): 42-46(in Chinese).
CHINA IRON & STEEL ASSOCIATION. 2020. 2019 economic operation report of China's iron and steel industry[EB/OL]. [2022-08-04]. http://lwzb.stats.gov.cn/pub/lwzb/gzdt/202005/ W020200528770641871558.pdf(in Chinese).
CHINA IRON & STEEL ASSOCIATION. 2021. 2020 economic operation report of China's iron and steel industry[EB/OL]. [2022-08-04]. http://lwzb.stats.gov.cn/pub/lwzb/tzgg/202107/ W020210723348607215248.pdf(in Chinese).
CHINA IRON & STEEL ASSOCIATION. 2022. 2021 economic operation report of China's iron and steel industry[EB/OL]. [2022-08-04]. http://lwzb.stats.gov.cn/pub/lwzb/tzgg/202205/ W020220511403031962228.pdf(in Chinese).
CITIC-CBMM MICROALLOYING TECHNOLOGY CENTER.2019. The Nb-steel legend in China(Ⅱ)(1979-2019)[M]. Beijing: Scientific and Technical Documentation Press(in Chinese).
CMOC GROUP LIMITED. 2022. CMOC Group Limited annual report in 2021[EB/OL]. [2022-08-04]. http:// file.finance.sina.com.cn/211.154.219.97:9494/MRGG/CNSESH_STOCK/2022/2022-3/2022-03-19/7898105.PDF(in Chinese).
CUI Zhi-feng, XU An-jun, SHANGGUAN Fang-qin. 2022. Low-carbon development strategy analysis of the domestic and foreign steel industry[J]. Chinese Journal of Engineering, 44(9): 1496-1506(in Chinese with English abstract).
DAI Tao, WEN Bo-jie, LIANG Liang, JIANG Han-lu. 2017. A tentative discussion on the law of lead consumption and a prediction of China’s lead demand[J]. Acta Geoscientica Sinica, 38(1): 61-68(in Chinese with English abstract).
DAI Xiao-wen, HE Yan-qiu, ZHONG Qiu-bo. 2015. Driving factors and their contributions to agricultural CO2 emission due to energy consumption in China: Based on an expended Kaya identity and LMDI decomposition method[J]. Chinese Journal of Eco-Agriculture, 23(11): 1445-1454(in Chinese with English abstract).
DAI Yan-yang, ZHONG Hai-yun, LI Jian, LI Qing-kui. 2002. Recovery of tantalum and niobium from secondary material[J]. Multipurpose Utilization of Mineral Resources, (1): 32-36(in Chinese with English abstract).
DISER. 2022. 2022 critical minerals strategy[EB/OL]. [2022-08-04]. https://www.industry.gov.au/sites/default/files/March%202022/do cument/2022-critical-minerals-strategy.pdf.
GAO Xin-rui, WANG An-jian. 2010. The prediction of China’s steel demand based on S-shaped regularity[J]. Acta Geoscientica Sinica, 31(5): 645-652(in Chinese with English abstract).
GUO Hua, ZHANG Tian-zhu. 2012. Prediction of demand for China steel and iron ore resources[J]. Metal Mine, (1): 5-9(in Chinese with English abstract).
GUO Qing-wei. 2005. Application of niobium in iron and steel industry[J]. Rare Metals Letters, 24(3): 31-34(in Chinese).
HE Hai-yang, HE Min, LI Jian-wu. 2018. Analysis of the niobium resources supply and demand pattern in China[J]. China Mining Magazine, 27(11): 1-5(in Chinese with English abstract).
HE Ji-lin, ZHANG Zong-guo. 2006. Current situation and development of tantalum and niobium industry in China[J]. China Metal Bulletin, (48): 2-8(in Chinese).
JOGMEC. 2021. 2020 mineral resources material flow-niobium(Nb)[EB/OL]. [2022-08-04]. https://mric.jogmec.go.jp/ wp-content/uploads/2021/06/material_flow2020_Nb.pdf(in Japanese).
LIU Lan-juan, XIE Mei-ping. 2004. Prediction research of the recursive neural network of nonlinear dynamic system prediction analysis of the iron and steel output in China[J]. Journal of Finance and Economics, 30(11): 26-33(in Chinese with English abstract).
LIU Wen-hao. 2021. Canada publishes list of 31 critical minerals[EB/OL]. [2022-08-04]. http://www.casisd.cn/zkcg/ydkb/ kjqykb/2021kjqykb/kjqykb202105/202108/t20210809_6155215.h tml(in Chinese).
LU Zhong-wu, MAO Jian-su. 2003. Crossing “Environmental Mountain”-On the increase and decrease of environment impact in the process of economic growth[J]. Engineering Science, (12): 36-42(in Chinese with English abstract).
LU Zhong-wu, WANG He-ming, YUE Qiang. 2011. Decoupling indicators: Quantitative relationships between resource use, waste emission and economic growth[J]. Resources Science, 33(1): 2-9(in Chinese with English abstract).
MENG Fan-jun. 2022. Low-carbon technologies help the steel industry achieve the "dual carbon" goal[N/OL]. China Industry News, 2022-05-10(002) [2022-08-04]. 10.28076/n.cnki.ncgyb.2022. 000611(in Chinese).
NASSAR N T, FORTIER S M. 2021. Methodology and technical input for the 2021 review and revision of the U.S. critical minerals list: U.S. Geological Survey open-file report[R]. Washington D.C.: U.S. Geological Survey.
NI Hang-xing. 2022. Study on production of ferroniobium from niobium reclaimed material[J]. Ferro-alloys, 53(2): 28-30, 34(in Chinese with English abstract).
ORTEGA-RUIZ G, MENA-NIETO A, GARCÍA-RAMOS J E. 2020. Is India on the right pathway to reduce CO2 emissions? Decomposing an enlarged Kaya identity using the LMDI method for the period 1990–2016[J]. Science of The Total Environment, 737: 139638.
OU Qiang. 2020. Demand analysis and supply risk of niobium resources in China[D]. Beijing: China University of Geosciences (Beijing)(in Chinese with English abstract).
PENG Qi-ming. 2017. Increase the deliverability of strategic minerals, promote rapid development of emerging industry-Speech on the “Analysis and Discussion Conference of Supply and Demand Situations of Strategic Minerals”[J]. Land and Resources Information, (1): 1-3, 41(in Chinese with English abstract).
QI Xiang-dong. 2007. Operation of China's iron and steel industry in 2006 and analysis of supply and demand in 2007[J]. China Steel, (3): 5-11(in Chinese).
QU Shen-ning. 2019. Decomposition of carbon emissions: Theoretical basis, path analysis and selection evaluation[J]. Urban and Environmental Studies, (3): 98-112(in Chinese with English abstract).
SUN Lu-yan, LIU Xiang, LEI Shu-wei, LI Hui-gai, ZHAI Qi-jie. 2022. Review on niobium application in microalloyed steel[J]. Journal of Iron and Steel ResEarch: International, 29(10): 1513-1525.
TAN Dong-bo, LI Dong-yong, XIAO Yi-lin. 2018. Geochemical characteristics of niobium and tantalum: A review of twin elements[J]. Earth Science, 43(1): 317-332(in Chinese with English abstract).
TANG Ping-zhi, WANG Shou-cheng, WANG Jing. 2021. Historical analysis and demand forecast of global tungsten consumption[J]. Natural Resource Economics of China, 34(1): 55-59, 83(in Chinese with English abstract).
TAVAKOLI A. 2018. A journey among top ten emitter country, decomposition of “kaya identity”[J]. Sustainable Cities and Society, 38: 254-264.
USGS. 2022. Mineral commodity summaries 2022[R]: Washington D.C.: U.S. Geological Survey.
WAGGONER P E, AUSUBEL J H. 2002. A framework for sustainability science: A renovated IPAT identify[J]. Proceedings of the National Academy of Sciences, 99(12): 7860-7865.
WANG An-jian, WANG Gao-shang, CHEN Qi-shen, YU Wen-jia. 2010. The mineral resources demand theory and the prediction model[J]. Acta Geoscientica Sinica, 31(2): 137-147(in Chinese with English abstract).
WANG Chang-jian, WANG Fei, ZHANG Hong-ou. 2016. The process of energy-related carbon emissions and influencing mechanism research in Xinjiang[J]. Acta Ecologica Sinica, 36(8): 2151-2163(in Chinese with English abstract).
WANG Jia-ying, YU Reng-an, LI Zhi-dan. 2020. The "niobium" and the "tantalum" brother with three heads and six arms-approaching the rare metal "niobium and tantalum"[J]. Scientific and Cultural Popularization of Land and Resources, 23(2): 14-18(in Chinese).
WANG Jing, SHI Xiang-jiang, NIU Li-xian, ZHANG Hao-yu. 2015. Cooper resources demand forecasting by scenario analysis in China[J]. Natural Resource Economics of China, 28(5): 53-57(in Chinese with English abstract).
WANG Jing, SHI Xiang-jiang, WANG Shou-cheng, TANG Ping-zhi. 2019. Demand forecast of China’s cobalt resource in the future[J]. Natural Resource Economics of China, 32(10): 28-33(in Chinese with English abstract).
WANG Xiu, LI Tian-jiao, WANG An-jian, LIU Chong-hao, FAN Feng-yan. 2022. The forecast of tantalum resource demand based on the output of major industrial products in China[J]. Mining Research and Development, 42(6): 191-196(in Chinese with English abstract).
XING Jia-yun, CHEN Qi-shen, ZHANG Yan-fei, LONG Tao, ZHENG Guo-dong, WANG Kun. 2019. Related mineral demand forecast under the development of global new energy automobile[J]. China Mining Magazine, 28(12): 67-71(in Chinese with English abstract).
YAO Tong-lu, WU Wei, YANG Yong, HE Qing, MENG Hua-dong, LIN Teng-chang. 2022. Analysis on low-carbon development of China's steel industry under “dual-carbon” goal[J]. Journal of Iron and Steel Research, 34(6): 505-513(in Chinese with English abstract).
YIN Wei-hong, CHEN Qin-yuan, FU Jun-yan, CHU You-yi, SHAO Zhi-jun. 1998. Fabrication industry of niobium and its products in China[J]. Rare Metal Materials and Engineering, (1): 1-8(in Chinese with English abstract).
YORK R, ROSA E A, DIETZ T. 2002. Bridging environmental science with environmental policy: Plasticity of population, affluence and technology[J]. Social Science Quarterly, 83(1): 18-34.
YORK R, ROSA E A, DIETZ T. 2003. STIRPAT, IPAT and ImPACT: analytic tools for unpacking the driving forces of environmental impacts[J]. Ecological Economics, 46(3): 351-365.
YUAN Lu, PAN Jia-hua. 2013. Disaggregation of carbon emission drivers in Kaya identity and its limitations with regard to policy implications[J]. Progressus Inquisitiones de Mutatione Climatis, 9(3): 210-215(in Chinese with English abstract).
YUAN Xiao-jing, MA Zhe, LI Jian-wu. 2019. Forecast and suggestions of lithium resources demand for new energy vehicles in China[J]. China Mining Magazine, 28(8): 61-65(in Chinese with English abstract).
ZHANG Hui-li, GUO Jin-ping. 2006. System dynamics model for forecasting China’s iron ore demand[J]. Metal Mine, (2): 22-25(in Chinese with English abstract).
ZHANG Xin. 2022. Analysis of the status quo of development and utilization of niobium resources in the world and China in 2021, the scale of ferroniobium import will be further expanded[EB/OL]. [2022-08-04]. http://huaon.com/channel/trend/ 804683.html(in Chinese).
ZHANG Yan-fei, CHEN Qi-shen, YU Wen-jia, LIU Qun-yi, LI Ying, TAN Hua-chuan. 2015. Global iron ore supply and demand trend analysis, 2015-2040[J]. Resources Science, 37(5): 921-932(in Chinese with English abstract).
ZHANG Ze-nan, ZHANG Zhao-zhi, WU Qing, PAN Zhao-shuai, XU Heng-yi. 2020. Chinese lithium mineral resource demand forecast[J]. China Mining Magazine, 29(7): 9-15(in Chinese with English abstract).
ZHENG Ming-gui, WANG Jia-nan, XU Bing. 2018. Forecast of medium and long-term demand of rare earth in China and policy suggestions based on co-integration and error correction model[J]. Chinese Rare Earths, 39(2): 148-158(in Chinese with English abstract).
ZHOU Yuan-yuan, WANG Jing, TANG Ping-zhi. 2018. Consumption regularity of molybdenum and its demand forecast of China in next decade[J]. Resources & Industries, 20(6): 24-29(in Chinese with English abstract).
ZHU Da-jian, QIU Shou-feng. 2007. Analytical tool for urban circular economy planning and its preliminary application: A case of Shanghai[J]. City Ecological Planning, 31(3): 64-69(in Chinese with English abstract).
-
计量
- 文章访问数: 53
- PDF下载数: 43
- 施引文献: 0