Online Field Trip Applications of the Web Platform for Real-scene 3D Digital Outcrops
-
摘要: 露头是地质考察的重点, 结合无人机倾斜摄影测量技术构建数字露头实景三维模型并实现露头可视化研究能够为解决传统地质研究中存在的效率低、危险性高和数据复用性差等问题提供全新的思路。论文研究了倾斜影像三维建模、数字露头三维可视化和全景影像可视化等三维技术, 并基于Cesium开源三维地球引擎研发了数字露头实景三维Web平台。平台实现了高精度露头实景三维模型的可视化, 并将露头相关的描述、图片、视频、全景、文献、观察点、地质标绘等信息与露头三维模型有效结合, 实现了露头三维模型上传与实景漫游、露头相关地质信息自主提供、分享、互动与可视化展示。论文通过实例证明了平台云端地质考察应用的有效性和新颖性。该平台作为第21届国际沉积学大会虚拟野外地质路线考察的首选, 已成功应用于15条路线中的12条。相比传统地质研究手段, 露头云端三维可视化研究能够帮助地质学者更加全面、直观地理解露头地质现象的时空展布和地质特征, 并且支持数字环境下露头资源的共建、共享, 节省了地质考察的时间和成本。Abstract: Geological research has focused on outcrops.Oblique photogrammetric technology, with the aid of unmanned aerial vehicles, can build 3D digital outcrop models and further help achieve visualization research of outcrops, providing new ideas for solving the problems of low efficiency, high risk, and poor data reusability that exist in traditional geological research methods.This study investigates the key technologies of 3D modeling of oblique images, 3D visualization of digital outcrops, visualization of panoramic models, and the design and implementation of a web platform for real-scene 3D digital outcrops based on the Cesium open-source 3D earth engine.The platform facilitates the visualization of high-precision 3D models of outcrops and combines outcrop-related information such as text, pictures, videos, panoramas, documents, observation stops, and geological plotting with 3D outcrop models, implementing upload and roaming of 3D models of outcrops, and self-supply, sharing, interaction, and visualization of outcrop-related information.Moreover, the applicability and novelty of the platform for online geological field trips are demonstrated through experiments.As the first choice for virtual field trips at the 21st International Congress of Sedimentology, the platform has been successfully applied to 12 of the 15 routes.Compared with traditional geological research methods, the visualization of 3D outcrops enables geologists to acquire a more comprehensive and intuitive understanding of the spatial and temporal distribution of geological phenomena as well as the features of outcrops.This platform also enables the co-construction and dissemination of outcrop resources in a digital environment, saving the time and economic costs associated with geological expeditions.
-
-
靳海亮, 高井祥, 2006.三维地形可视化技术研究进展[J].测绘科学, 31(6): 162-164.
乐世华, 张煦, 张尚弘, 等, 2018.基于Cesium的WebGIS流域虚拟场景搭建[J].水利水电技术, 49(5): 90-96.
李亚林, 王成善, 文华国, 等, 2021.数字露头与野外实践教学平台建设趋势与展望[J].中国地质教育, 30(1): 31-35.
刘帅, 陈建华, 王峰, 等, 2022.基于无人机倾斜摄影的数字露头实景三维模型构建[J].地质科学, 57(3): 945-957.
乔占峰, 沈安江, 郑剑锋, 等, 2015.基于数字露头模型的碳酸盐岩储集层三维地质建模[J].石油勘探与开发, 42(3):328-337.
万剑华, 王朝, 刘善伟, 等, 2019.倾斜摄影测量构建地质数字露头[J].地质科技通报, 38(1): 258-264.
王竞雪, 朱庆, 王伟玺, 2013.多匹配基元集成的多视影像密集匹配方法[J].测绘学报, 42(5): 691-698.
印森林, 陈恭洋, 刘兆良, 等, 2018a.基于无人机倾斜摄影的三维数字露头表征技术[J].沉积学报, 36(1): 72-80.
印森林, 谭媛元, 张磊, 等, 2018b.基于无人机倾斜摄影的三维露头地质建模: 以山西吕梁市坪头乡剖面为例[J].古地理学报, 20(5): 909-924.
英向华, 胡占义, 2003.一种基于球面透视投影约束的鱼眼镜头校正方法[J].计算机学报, 26(12): 1702-1708.
郑剑锋, 沈安江, 乔占峰, 2015.基于数字露头的三维地质建模技术--以塔里木盆地一间房剖面一间房组礁滩复合体为例[J].岩性油气藏, 27(5): 108-115.
郑剑锋, 沈安江, 乔占峰, 等, 2014.基于激光雷达技术的三维数字露头及其在地质建模中的应用--以巴楚地区大班塔格剖面礁滩复合体为例[J].海相油气地质, 19(3):72-78.
朱如凯, 白斌, 袁选俊, 等, 2013.利用数字露头模型技术对曲流河三角洲沉积储层特征的研究[J].沉积学报, 31(5):867-877.
BUCKLEY S J, HOWELL J A, NAUMANN N, et al., 2022.V3Geo: A cloud-based repository for virtual 3D models in geoscience[J].Geoscience Communication, 5(1): 67-82.
CASINI G, HUNT D W, MONSEN E, et al., 2016.Fracture characterization and modeling from virtual outcrops[J].AAPG Bulletin, 100(1): 41-61.
CESIUM GS, 2022.Cesium[EB/OL].[2022-05-12].https://www.cesium.com.
HUNTER J, BROOKING C, READING L, et al., 2016.A Web-based system enabling the integration, analysis, and 3D sub-surface visualization of groundwater monitoring data and geological models[J].International Journal of Digital Earth, 9(2): 197-214.
JI Haowei, LUO Xianqi, 2019.3D scene reconstruction of landslide topography based on data fusion between laser point cloud and UAV image[J].Environmental Earth Sciences, 78(17): 534.
JIN Hailiang, GAO Jingxiang, 2006.The research development of 3D terrain visual technique[J].Science of Surveying and Mapping, 31(6): 162-164(in Chinese with English abstract).
LÄBE T, FÖRSTNER W, 2006.Automatic relative orientation of images[C]//Proceedings of the 5th Turkish-German Joint Geodetic Days: 1-6.
LE Shihua, ZHANG Xu, ZHANG Shanghong, et al., 2018.Cesium-based construction of WebGIS watershed virtual scene[J].Water Resources and Hydropower Engineering, 49(5): 90-96(in Chinese with English abstract).
LI Yalin, WANG Chengshan, WEN Huaguo, et al., 2021.Construction trends and prospects of digital outcrop and field practice teaching platform[J].Chinese Geological Education, 30(1): 31-35(in Chinese).
LIU Shuai, CHEN Jianhua, WANG Feng, et al., 2022.Construction of a 3D model of digital outcrop real scene based on UAV oblique photography[J].Chinese Journal of Geology, 57(3):945-957(in Chinese with English abstract).
LIVIO F A, BOVO F, GABRIELI F, et al., 2022.Stability analysis of a landslide scarp by means of virtual outcrops: The Mt.Peron Niche Area (Masiere di Vedana Rock Avalanche, eastern southern Alps)[J].Frontiers in Earth Science, 10:863880.
LUCAS B D, KANADE T, 1981.An iterative image registration technique with an application to stereo vision[C]//Proceedings of the 7th International Joint Conference on Artificial Intelligence, 2: 674-679.
LUNDMARK A M, AUGLAND L E, JØRGENSEN S V, 2020.Digital fieldwork with Fieldmove-how do digital tools influence geoscience students' learning experience in the field?[J].Journal of Geography in Higher Education, 44(3):427-440.
MAO Bo, BAN Yifang, LAUMERT B, 2020.Dynamic online 3D visualization framework for real-time energy simulation based on 3D tiles[J].ISPRS International Journal of Geo-Information, 9(3): 166.
MARIOTTO F P, ANTONIOU V E, DRYMONI K, et al., 2021.Virtual geosite communication through a WebGIS platform: A case study from Santorini Island (Greece)[J].Applied Sciences, 11(12): 5466.
MEAD C, BUXNER S, BRUCE G, et al., 2019.Immersive, interactive virtual field trips promote science learning[J].Journal of Geoscience Education, 67(2): 131-142.
PU S, XIE L, JI M, et al., 2019.Real-time powerline corridor inspection by edge computing of UAV LiDAR data[J].The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2/W13: 547-551.
QIAO Zhanfeng, SHEN Anjiang, ZHENG Jianfeng, et al., 2015.Three-dimensional carbonate reservoir geomodeling based on the digital outcrop model[J].Petroleum Exploration and Development, 42(3): 328-337(in Chinese with English abstract).
RACOLTE G, MARQUES A, SCALCO L, et al., 2022.Spherical K-Means and Elbow Method Optimizations With Fisher Statistics for 3D Stochastic DFN From Virtual Outcrop Models[J].IEEE Access, 10: 63723-63735.
SKETCHFAB, 2023.GeoAvatar[EB/OL].[2023-07-10].https://sketchfab.com/GeoAvatar.
TAVANI S, GRANADO P, CORRADETTI A, et al., 2014.Building a virtual outcrop, extracting geological information from it, and sharing the results in Google Earth via OpenPlot and Photoscan: An example from the Khaviz Anticline (Iran)[J].Computers & Geosciences, 63: 44-53.
WAN Jianhua, WANG Zhao, LIU Shanwei, et al., 2019.Reconstructing geological digital outcrops with oblique photogrammetry[J].Geological Science and Technology Information, 38(1): 258-264(in Chinese with English abstract).
WANG Jiaheng, WANG Liguan, JIA Mingtao, et al., 2020.Construction and optimization method of the open-pit mine DEM based on the oblique photogrammetry generated DSM[J].Measurement, 152: 107322.
WANG Jingxue, ZHU Qing, WANG Weixi, 2013.A dense matching algorithm of multi-view image based on the integrated multiple matching primitives[J].Acta Geodaetica et Cartographica Sinica, 42(5): 691-698(in Chinese with English abstract).
YIN Senlin, CHEN Gongyang, LIU Zhaoliang, et al., 2018a.3D digital outcrop characterization technology based on unmanned aerial vehicle oblique photography[J].Acta Sedimentologica Sinica, 36(1): 72-80(in Chinese with English abstract).
YIN Senlin, TAN Yuanyuan, ZHANG Lei, et al., 2018b.3D outcrop geological modeling based on UAV oblique photography data: A case study of Pingtouxiang section in Lüliang City, Shanxi Province[J].Journal of Palaeogeography(Chinese Edition), 20(5): 909-924(in Chinese with English abstract).
YING Xianghua, HU Zhanyi, 2003.Fisheye Lense Distortion Correction Using Spherical Perspective Projection Constraint[J].Chinese Journal of Computers, 26(12):1702-1708(in Chinese with English abstract).
ZHENG Jianfeng, SHEN Anjiang, QIAO Zhanfeng, 2015.3D geologic modeling technology based on digital outcrop: A case study of reef-shoal body of Yijianfang Formation in Yijianfang outcrop, Tarim Basin[J].Lithologic Reservoirs, 27(5): 108-115(in Chinese with English abstract).
ZHENG Jianfeng, SHEN Anjiang, QIAO Zhanfeng, et al., 2014.LIDAR-based 3D digital outcrop modeling and application in geologic modeling: A case of modeling of Middle Ordovician reef-beach carbonate body at Dabantage outcrop in Bachu uplift, Tarim Basin[J].Marine Origin Petroleum Geology, 19(3): 72-78(in Chinese with English abstract).
ZHU Rukai, BAI Bin, YUAN Xuanjun, et al., 2013.A new approach for outcrop characterization and geostatistical analysis of meandering channels sandbodies within a delta plain setting using digital outcrop models: Upper Triassic Yanchang tight sandstone Formation, Yanhe outcrop, Ordos Basin[J].Acta Sedimentologica Sinica, 31(5): 867-877(in Chinese with English abstract).
-
计量
- 文章访问数: 11
- PDF下载数: 0
- 施引文献: 0